М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
izibaevsergei
izibaevsergei
28.09.2021 12:15 •  Физика

См кг/моль=3,2*10^-2 р,па=1,5*10^6 v,m^-3=0,83 t,k=300 найти : m кг

👇
Ответ:
leesasha083
leesasha083
28.09.2021
PV=m/M *R*T
pVM=m*R*T
m=pVM/RT = 16 кг.
4,8(65 оценок)
Ответ:
chiminswife
chiminswife
28.09.2021

N(a)-постоянная Больцмана, если что. m(о)- масса одной молекулы.

m в-ва = m(o)*N

m(o)=M/N(a). m(o)=5,23*10^(-26)

p=nkT. От сюда n=3,62*10^(26)

N=nV.  N=3*10^(26)

m в-ва = 5,32*10^(-26)* 3*10^(26)=15,96 кг

4,5(33 оценок)
Открыть все ответы
Ответ:
fakersot
fakersot
28.09.2021

5 с

Объяснение:

Запишем уравнение движения Фокса и Форда, приняв для последнего начальную координату за x₀₂ и скорость за v₂:

\displaystyle x_{Fox}(t)=\frac{at^2}{2}

\displaystyle x_{Ford}(t)=x_{02}-v_2t

Тогда, расстояние между ними подчиняется закону:

\displaystyle s(t)=x_{Ford}(t)-x_{Fox}(t)=x_{02}-v_2t-\frac{at^2}{2}

По условию, в некоторый момент времени τ это расстояние удовлетворяет условию:

\displaystyle x_{02}-v_2\tau-\frac{a\tau^2}{2}=0.75x_{02}

Скорости Фокса и Форда:

\displaystyle v_{Fox}(t)=at

\displaystyle v_{Ford}(t)=v_2

Их относительная скорость в момент времени τ:

\displaystyle v'=a\tau+v_2=3.5 м/с

Подставляя все исходные данные в уравнения получим систему:

\displaystyle 65-v_2\tau-0.05\tau^2=0.75*65=48.75

\displaystyle 0.1\tau+v_2=3.5

Выражаем скорость Форда из второго уравнения и подставляем ее в в первое:

\displaystyle v_2=3.5-0.1\tau

\displaystyle 65-(3.5-0.1\tau)\tau-0.05\tau^2=48.75

\displaystyle 65-3.5\tau+0.1\tau^2-0.05\tau^2=48.75

\displaystyle 0.05\tau^2-3.5\tau+16.25=0

Решая полученное квадратное уравнение, находим два корня 65 и 5 секунд. Скорости Форда, соответствующие этим временам 3,5-0,1*5=3 м/с и 3,5-0,1*65=-3 м/с, значит нам подходит решение 5 секунд, так как для 65 секунд Форд идет не на встречу Фоксу, а убегает от него.

4,7(93 оценок)
Ответ:
Adilka11
Adilka11
28.09.2021

5 с

Объяснение:

Запишем уравнение движения Фокса и Форда, приняв для последнего начальную координату за x₀₂ и скорость за v₂:

\displaystyle x_{Fox}(t)=\frac{at^2}{2}

\displaystyle x_{Ford}(t)=x_{02}-v_2t

Тогда, расстояние между ними подчиняется закону:

\displaystyle s(t)=x_{Ford}(t)-x_{Fox}(t)=x_{02}-v_2t-\frac{at^2}{2}

По условию, в некоторый момент времени τ это расстояние удовлетворяет условию:

\displaystyle x_{02}-v_2\tau-\frac{a\tau^2}{2}=0.75x_{02}

Скорости Фокса и Форда:

\displaystyle v_{Fox}(t)=at

\displaystyle v_{Ford}(t)=v_2

Их относительная скорость в момент времени τ:

\displaystyle v'=a\tau+v_2=3.5 м/с

Подставляя все исходные данные в уравнения получим систему:

\displaystyle 65-v_2\tau-0.05\tau^2=0.75*65=48.75

\displaystyle 0.1\tau+v_2=3.5

Выражаем скорость Форда из второго уравнения и подставляем ее в в первое:

\displaystyle v_2=3.5-0.1\tau

\displaystyle 65-(3.5-0.1\tau)\tau-0.05\tau^2=48.75

\displaystyle 65-3.5\tau+0.1\tau^2-0.05\tau^2=48.75

\displaystyle 0.05\tau^2-3.5\tau+16.25=0

Решая полученное квадратное уравнение, находим два корня 65 и 5 секунд. Скорости Форда, соответствующие этим временам 3,5-0,1*5=3 м/с и 3,5-0,1*65=-3 м/с, значит нам подходит решение 5 секунд, так как для 65 секунд Форд идет не на встречу Фоксу, а убегает от него.

4,7(25 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ