Пусть a1=2 м/с² - ускорение первого спортсмена, t с - время с момента его старта до момента, когда его догонит второй спортсмен. Тогда за это время он пробежит путь s1=a1*t²/2 м. Пусть a2=3 м/с² - ускорение второго спортсмена, t-3 с - время с момента его старта до момента, когда он догонит первого спортсмен. Тогда за это время он пробежит путь s2=a2*(t-3)²/2 м. Из условия s1=s2 следует уравнение t²=3/2*(t-3)², которое приводится к квадратному уравнению t²-18*t+27=0. Оно имеет решения t1=(18+√216)/2 с и t2=(18-√216)/2 с. Но так как t2<3 с, то второй корень не годится, и тогда t=(18+√216)/2=9+√54=9+3*√6 с.
Формула: A = Fs, где А - работа, F - сила и s - пройденный путь. Единица измерения - Джоули [Дж]
Пример. Вычислите работу, совершаемую при подъеме гранитной плиты объемом 0,5 м3 на высоту 20 м. Плотность гранита 2500 кг/м3.
Дано: V = 0,5 м3 ρ = 2500 кг/м3 h = 20 м
А=?
Решение: A = Fs, где F -сила, которую нужно приложить, чтобы равномерно поднимать плиту вверх. Эта сила по модулю равна силе тяж Fтяж, действующей на плиту, т. е. F = Fтяж. А силу тяжести можно определить по массе плиты: Fтяж = gm. Массу плиты вычислим, зная ее объем и плотность гранита: m = ρV; s = h, т. е. путь равен высоте подъема.
Итак, m = 2500 кг/м3 · 0,5 м3 = 1250 кг. F = 9,8 Н/кг · 1250 кг ≈ 12 250 Н. A = 12 250 Н · 20 м = 245 000 Дж = 245 кДж.
ответ: t=9+3*√6 с.
Объяснение:
Пусть a1=2 м/с² - ускорение первого спортсмена, t с - время с момента его старта до момента, когда его догонит второй спортсмен. Тогда за это время он пробежит путь s1=a1*t²/2 м. Пусть a2=3 м/с² - ускорение второго спортсмена, t-3 с - время с момента его старта до момента, когда он догонит первого спортсмен. Тогда за это время он пробежит путь s2=a2*(t-3)²/2 м. Из условия s1=s2 следует уравнение t²=3/2*(t-3)², которое приводится к квадратному уравнению t²-18*t+27=0. Оно имеет решения t1=(18+√216)/2 с и t2=(18-√216)/2 с. Но так как t2<3 с, то второй корень не годится, и тогда t=(18+√216)/2=9+√54=9+3*√6 с.