Изотермический процесс – процесс, который протекает при постоянной температуре. Закон, который описывает этот процесс, называется закон Бойля – Мариотта: в ходе изотермического процесса произведение давления газа на его объем остается постоянным.
Можно также записать, что:
Теперь перейдем к графикам данного изопроцесса – вообще, нужно отметить, что принято строить графики в трех видах координат (см. рис. 1).
Рис. 1. Изотермический процесс
Проще всего изотерма будет выглядеть в координатах и . В самом деле, если температура не изменяется, то это прямая, перпендикулярная оси T. Вспомним, что в законе Бойля-Мариотта:
Она похожа на график функции (гипербола). Каждая изотерма отвечает определенному значению температуры, то есть на каждой точке данной гиперболы можно сказать, что с газом что-то происходило, но температура при этом не менялась. Заметим, чем выше температура, тем выше лежит гипербола на диаграмме (см. рис. 2).
Рис. 2. Гиперболы при разных температурах
Объяснение:
1. Приступаючи до розв’язання задач з будь-якої теми, спочатку вивчіть
теоретичний матеріал за підручником, розберіться в прикладах розв’язання
типових задач.
2. Уважно прочитайте умову задачі, вникаючи в її зміст. Чітко уявіть
собі фізичне явище, процеси, які відображені умовою задачі.
3. Запишіть коротку умову задачі, вказуючи всі величини з умови
задачі та їх числові значення. Окремо позначте величини, що шукаються в
задачі. Числові значення переведіть в одиниці СІ.
4. Ретельно виконайте креслення, котре пояснює зміст задачі (в тих
випадках, коли це можливо). Є деякі задачі, що розв’язуються графічно, тоді
правильно виконане креслення буде розв’язанням задачі.
5. Згадайте, якому закону підпорядкований фізичний процес і якими
формулами він описується математично. Якщо формул декілька, співставте
величини, що входять у різні формули, із заданими величинами та тими, які
необхідно знайти.
6. На першому етапі розв’язуйте задачу в загальному вигляді, тобто
виводьте формулу, в котрій шукана величина виражена через величини,
задані в умові. Винятки із цього правила вкрай рідкі й бувають у двох
випадках: якщо формула якої-небудь проміжної величини настільки
громіздка, що обчислення цієї величини значно спрощує подальший запис
розв’язання; якщо числовий розв’язок задачі значно простіший, ніж
виведення формули.