Zn+2HCl = ZnCl2+H2 Находим количество вещества цинка: у(Zn)=м/М=1,3/65=0,02 моль Находим массу HCl в растворе: m(HCl)=w*m(р-ра)=10*36,5/100=3,65 г Находим количество вещества HCl в растворе: у(HCl)=m/М=3,65/36,5=0,1 моль Видим что HCl получается в избытке, поэтому количество вещества образовавшейся соли считаем по количеству вещества цинка. Из уравнения реакции видим что количество вещества соли равно количеству вещества цинка: y(ZnCl2)=у(Zn)=0,02 моль масса соли равна: м=у*М=0,02*(65+2*35,5)= 2,7 г После того как к раствору добавили 1,3г цинка его масса стала равняться 1,3+36,6=37,9 г Тогда массовая доля соли будет равна: w=м(соли)/м(раствора)=2,7/37,9=0,071=7,1%
N = mg*cos(a), откуда сила трения Fтр = N*y = mg*cos(a)*y поскольку вдоль наклонной плоскости движение равномерное, то сила тяги F равна сумме силы трения и проекции силы тяжести на наклонную плоскость mg*sin(a): F = mg*cos(a)*y + mg*sin(a) = mg*(cos(a)*y + sin(a)) протягивая груз на расстояние S, мы совершаем работу A = S*F, в то время как груз поднимается на высоту h = S*sin(a), то есть полезная работа A_полезн = mgh = mg*S*sin(a) кпд равен отношению полезной работы к полной совершенной работе: A_пол/A = mg*S*sin(a) / (S*mg*(cos(a)*y + sin(a))) = sin(a)/(cos(a)*y + sin(a)) = 1/(y*ctg(a)+1), Чтобы выразить в процентах умножим на 100
По закону сохранения энергии:
Eк1+Eп1=Eк2+Eп2, где Eк1 и Eп1 - энергия в момент броска; Eк2 и Eп2 - энергия в момент равенства Еп и Ек.
В начале броска: h=0, Eп1=0.
В момент достижения максимальной высоты: Eк2=Eп2.
Eк1=Eк1+Eп2=2Eп2.
Eк1=(m*V^2)/2, m-масса тела, V-скорость тела в момент броска (V=20 м/с).
Eп2 = m*g*h, g-ускорение свободного падения (g=10м/с^2), h-высота (м).
(m*V^2)/2=2m*g*h;
h=(V^2)/(2*g)=(20^2)/(4*10)=400/40=10 м.
ответ: Кинетическая энергия равна потенциальной на высоте 10 м.