Объяснение:
Исходя из формулы давления, давление обратно пропорционально площади(чем больше площадь, тем меньше давление). Отсюда следует, что наибольшее давление будет на самой маленькой по площади грани, наименьшее давление - на самой большой. Самая маленькая грань - 12 х 7 см, самая большая - 27 х 12 см. Найдем давления (сила давления будет равной в обоих случаях и равна силе тяжести, т.е. mg):
P max = mg / s min = 7,7*10 / 0,12*0,06 = 15 кПа
P min = mg/ s max = 7,7*10 / 0,24*0,12 = 3 345 Па = 3,40 кПа
ответ: ρ=1890.
Объяснение:
Пусть p кг/м³ - плотность материала шара, V - его объём, k Н/м - жёсткость пружины, x м - её удлинение под действием силы тяжести при отсутствии сосуда, x1 м - то же при наличии сосуда. При отсутствии сосуда на шар действуют сила упругости пружины F=k*x и сила тяжести Fт=m*g, где m=p*V - масса шара, g - ускорение свободного падения. Так как по условию шар неподвижен, то F=Fт, или k*x=p*V*g (*). При наличии сосуда на шар действуют сила упругости F1=k*x1, сила Архимеда F2=p0*V0*g и сила тяжести Fт=p*V*g, где V0=μ*V=0,6*V - часть объёма шара, погружённая в жидкость. Так как и в этом случае шар неподвижен, то F1+F2=Fт, или k*x1+p0*V0*g=p*V*g, или k*x1+900*0,6*V*g=k*x1+540*V*g=p*V*g (**). И так как по условию x1=x/η=x/1,4, то отсюда x=1,4*x1 м. Подставляя это выражение в уравнение (*) и присоединяя к нему уравнение (**), получаем систему уравнений:
1,4*k*x1=p*V*g
k*x1+540*V*g=p*V*g
Из первого уравнения находим p=1,4*k*x1/(V*g). Разделив теперь второе уравнение на произведение V*g, получаем уравнение k*x1/(V*g)+540=p. Умножив это уравнение на 1,4, приходим к уравнению
p+756=1,4*p. Решая его, находим p=756/0,4=1890 кг/м³.