М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кек786564434
кек786564434
28.07.2020 00:00 •  Физика

Мощность развиваемую тепловозом, сила тяги которого 60 кн, при равномерном движении со скоростью 72 км/ч

👇
Ответ:
Olga692010
Olga692010
28.07.2020
Fтяги=60кH=60000 H
U=72км/ч=20м/c
N=?
Решение:
Мощность тяги- это сила тяги, умноженная на скорость движения
N=Fтяги*V
N=60000 H * 20 м/c=1200000 Вт=1.2 MBт
ответ:N=1.2 MBт
4,5(6 оценок)
Открыть все ответы
Ответ:
bondarantona
bondarantona
28.07.2020
Инерция-свойство тел оставаться в некоторых системах отсчёта в состоянии покоя или равномерного прямолинейного движения в отсутствии или при взаимной компенсации внешних воздействий.
Примеры:
полет любого предмета, например, спортивного копья, пули, которые останавливаются в конце концов под действием силы тяжести и трения о воздух. Это большие и тяжелые вещи, которые нам трудно сдвинуть с места, например, шкаф, пианино или собранный на отдых чемодан. Это ситуация, когда нам для того, чтобы повернуть на бегу, приходится или замедлять бег или хвататься рукой за столб либо дерево.
4,8(17 оценок)
Ответ:
Alex228345290
Alex228345290
28.07.2020
Посчитаем поле бесконечной равномерно заряженной нити. Из аксиальной симметрии задачи следует, что и поле имеет аксиальную симметрию. Другими словами, оно является функцией только расстояния от нити до точки наблюдения: \mathbf{E}=E(r)\cdot \mathbf{e_r}}
Здесь \mathbf{e_r} - единичный вектор вдоль перпендикуляра из точки наблюдения на нить, он "смотрит" прочь от последней, а r - расстояние от точки наблюдения до нити.
Для того, чтобы посчитать поле в явном виде, проще всего воспользоваться теоремой Гаусса.
Выберем такую поверхность: это цилиндр, ось которого совпадает с нитью, радиусом r и длиной образующей l.
Теорема Гаусса гласит, что поток поля через замкнутую поверхность с точностью до размерного множителя \frac{1}{\varepsilon_0} равен заряду внутри нее:
$\int\limits_{\partial V} \mathbf{E}\cdot \mathrm d\mathbf S=\frac{1}{\varepsilon_0}\int\limits_V \rho\ \mathrm d V
Левая часть в нашем случае распадается на три слагаемых:
1) поток через боковую поверхность,
2) поток через верхнее дно,
3) поток через нижнее дно.
Очевидно, что два последних вклада не дадут, поскольку, как уже было сказано, поле имеет только радиальные компоненты, а значит, перпендикулярно плоскостям, в которых лежат основания цилиндра.
Первое слагаемое дает вклад \Phi=E(r)\cdot 2\pi r\cdot l
Правая часть теоремы Гаусса тоже очень легко считается.
Q=\lambda l
Итак,
E(r)2\pi rl=\dfrac{1}{\varepsilon_0}\lambda l.
Отсюда легко выразить явный вид поля:
E(r)=\dfrac{\lambda}{2\pi \epsilon_0}\cdot \dfrac 1r.
Все, подставим числа, посчитаем.
E(r)=\dfrac{k\lambda}{2r}=\dfrac{9\cdot 10^9\cdot 2\cdot 10^{-4}}{2\cdot 10\cdot 10^{-2}}=900\mathrm{\ \dfrac Vm}.
4,4(59 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ