Фотон выбивает с поверхности металла электрон, энергией 3,2*10^-19 дж. чему равна минимальная энергия такового фотона, если работа выхода с поверхности металла составляет 3,2*10^-19 дж?
Записываем второй закон Ньютона: Δp = F Δt, Δt мало, жирным цветом выделены векторные величины m Δv = (mg - kv) Δt m Δv = mg Δt - kv Δt
Заметим, что v Δt - это перемещение мяча за время Δt, т.е. Δr.
m Δv = mg Δt - k Δr
Сложим такие уравнения от начала движения до некоторого момента t, заметив, что сумма Δx равно разности конечного значения x и начального: m (v - v₀) = mgt - k(r - r₀)
Запишем это уравнение в проекции на ось y: m(Vy - V0y) = -mgt - k(y - y₀)
В момент, когда мяч будет в наивысшей точке, Vy = 0, y = y₀ + H, t = T: -m V0y = -mgT - kH mgT = m V0y - kH T = V0y / g - kH/mg
Если бы сопротивления не было, время полета мяча до наивысшей точки траектории было бы равно V0y / g, при учете сопротивления оно уменьшается на величину kH / mg.
1. Это векторная физическая величина, характеризующая вращательное действие силы на твёрдое тело 2.На крестообразный маятник при его вращении действуют моменты сил, создаваемые силой натяжения и силой трения в оси маятника. 3. Тут несколько вариантов. Моментом инерции твердого тела относительно оси называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до оси. Моментом инерции твёрдого тела относительно плоскости называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояний от этой точки до плоскости. Моментом инерции твёрдого тела относительно полюса (полярным моментом инерции) называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от точки до этого полюса. 4.Момент инерции J тела относительно произвольной неподвижной оси равен сумме момента инерции этого тела Jc относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями: 5.Маятник совершает вращательное движение, которое можно описать уравнением Iβ = M, где М - результирующий момент сил относительно оси вращения, действующих на маятник. Кратко не получилось)