Движение, при котором скорость тела изменяется одинаково за любые равные промежутки времени, называется равнопеременным движением. Равнопеременное движение может быть равноускоренным или равнозамедленным.
Быстроту изменения скорости характеризуют величиной, обозначаемой а и называемой ускорением. Ускорением называют векторную величину, равную отношению изменения скорости тела v-v0 к промежутку времени t, в течение которого это изменение произошло:
a=(v-v0)/t. (1.9)
Здесь V0 - начальная скорость тела, т. е. его мгновенная скорость в момент начала отсчета времени; v - мгновенная скорость тела в рассматриваемый момент времени.
Из формулы (1.9) и определения равноускоренного движения следует, что в таком движении ускорение не изменяется. Следовательно, прямолинейное равноускоренное движение есть движение с постоянным ускорением (a=const). В прямолинейном равноускоренном движении векторы v0, v и а направлены по одной прямой. Поэтому модули их проекций на эту прямую равны модулям самих этих векторов, и формулу (1.9) можно записать в виде
a=(v-v0)/t. (1.10)
Из формулы (1.10) устанавливается единица ускорения.
В СИ единицей ускорения является 1 м/с2 (метр на секунду в квадрате) ; 1 м/с2 - это ускорение такого равноускоренного движения, при котором за каждую секунду скорость тела увеличивается на 1 м/с.
Я так понял, что времена даны: t1 и t2.
Когда он выскочил на перрон, вагон, который он увидел, имел скорость
v0 = at0, (1)
где t0 - искомое время опоздания.
Рассмотрим, что происходило далее:
Пусть s -длина вагона.
Для промежутка времени t1 имеем след. ур-ия равноускоренного движения:
Здесь а - ускорение, а v1 - начальная скорость следующего проносящегося вагона (она же конечная скорость предыдущего вагона)
Для промежутка времени t2 уравнение перемещения вагона имеет вид:
Теперь приравняв (2) и (3), получим выражение для v0:
И наконец приравняв к (1), получим искомое время опоздания: