Период T=2*pi*sqrt(L*C) В таком контуре энергия на катушке равна энергии на конденсаторе. Wс=Wl (C*U^2)/2 = (L*I^2)/2 Но этот контур не подключен к источнику питания, значит нажно использовать формулу для энергии конденсатора q^2/(2*C) после преобразований получаем, что L=q^2 (max) / ( i^2 (max)*C) Теперь подставим в формулу периода, где сократится емкость конденсатора. T=2*pi*sqrt(q^2 / i^2) Мы просто выразили индуктивность и подставили в формулу периода. Поскольку контур сам по себе, без источника, то значения тока и заряда будут максимальными.
Так как заряженный шар радиуса R смещен от центра сферы на R/2 то любая сфера с центром в заданной точке и радиусом больше R+R/2 содержит внутри исходный заряженный шар с зарядом q теперь нужно воспользоваться теоремой остроградского-гаусса поток вектора напряженности электрического поля через замкнутую сферическую поверхность равен заряду ограниченному єтой поверхности делить на Еo заряд известен, он равен заряду шара, полностью находящегося внутри сферы. Ео - электрическая постоянная Ф=q/Eo=17,7*10^(-9)/8,85 × 10^-12=2000 В*м
U2=71.4 кВ
Объяснение:
N=0.2 (20%) U1=50 кВ U2=?
===
η=N+0.5=U1/U2
U2=U1/(N+0.5)=50/(0.2+0.5)=71.4 кВ