Удельная теплота сгорания керосина составляет q = 40,8 МДж/кг m = 2 кг - масса керосина при полном сгорании m керосина выделится Q = qm = 40,8·2 = 81,6 МДж энергии
Студент от начала состава вглубь него несколько десятков метров. Значит, в тот момент времени, когда он увидел в окне окончание проезжаемого моста, т.е. через секунд от начала отсчёта времени – нос электрички уже был высунут за пределы моста на эти самые несколько десятков метров. Т.е. понятно, что нос электрички достиг окончания моста МЕНЕЕ ЧЕМ ЗА секунд!
В то же время, понятно, что в самом начале отсчёта времени – студент находился вприжимку к носу электрички (внутри неё), а значит, она начала въезжать на мост как раз в начале отсчёта времени.
Теперь, рассчитаем задачу строго, по законам физики:
Согласно принципу относительности Галилея: «для того, чтобы найти вектор скорости тела относительно земли, нужно к вектору его скорости относительно транспорта прибавить вектор скорости транспорта».
В частности, в случае движения вдоль одной линии, принцип Галилея упрощается: «для того, чтобы найти проекцию скорости тела относительно земли, нужно к проекции его скорости относительно транспорта прибавить проекцию скорости транспорта».
Электричка движется вперёд со скоростью км/ч км/мин км/мин.
Студент относительно электрички движется НАЗАД (!) со скоростью км/ч км/мин.
Скорость студента относительно земли равна алгебраической сумме проекций км/мин.
Как следует из условия, в начале отсчёта времени студент находился точно на уровне начала моста, а в конце отсчёта времени – точно на уровне конца моста. Отсюда следует, что ровно за секунд минут, студент относительно земли переместился точно на длину моста. Найдём длину моста км/мин мин км м м .
Для ответа на поставленный в задаче вопрос нужно понять, в чём заключается этот вопрос. Взглянем на чертёж, приложенный к задаче. Из него легко понять, что от того момента времени, когда первый (!) вагон электрички начал въезжать на мост до того момента, как последний (!) вагон выехал с моста – всё это время электричка находилась на мосту. А значит за время, пока электричка находилась на мосту, она проехала ДВОЙНУЮ длину моста м .
Чтобы найти время в течение которого ВСЯ электричка проезжала по мосту, разделим путь, который она проделала за это время на её скорость:
сек сек сек сек .
О т в е т : полное время нахождения электрички на мосту, т.е., когда хотя бы какая-то её часть находилась на мосту, это и будет время, в течение которого электричка проехала мост. Это время сек .
Сначала изложим общий ход решения. Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем. Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов. Далее находим объем А затем выражаем среднюю плотность [г/см³] Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен их сумме. [см³] [см³] Суммарный объем: [см³] А плотность сплава соответственно: [г/см³]
Значит пустоты есть. И объем этой пустоты равен разности объема кубика и суммарного объема сплава [см³]
q = 40,8 МДж/кг
m = 2 кг - масса керосина
при полном сгорании m керосина выделится
Q = qm = 40,8·2 = 81,6 МДж энергии