63 мГн
Объяснение:
Дано:
Wэ = 0,5 мДж = 0,5*10⁻³ Дж
ν = 400 кГц = 4*10⁵ Гц
qmax = 50 нКл = 50*10⁻⁹ Кл
L - ?
Запишем формулу Томсона:
T = 2π*√ (L*C)
Возведем обе части в квадрат:
T² = 4*π²*L*C
Отсюда индуктивность катушки:
L = T² / (4*π²*C) (1)
Итак, нам надо знать период T и емкость конденсатора С.
1) Период колебаний:
T = 1 / υ = 1 / 4*10⁵ = 2,5*10⁻⁶ c
2)
Емкость конденсатора найдем из формулы:
Wэ = q² / (2*C)
C = q² / (2*Wэ) = (50*10⁻⁹)² / (2*0,5*10⁻³) = 2,5*10⁻¹² Ф
3)
Найденные величины подставляем в формулу (1)
L = T² / (4*π²*C) = (2,5*10⁻⁶ )² / (4*3,14²* 2,5*10⁻¹²) ≈ 0,063 Гн или 63 мГн
Найдем формулу, связывающую амплитудное значение тока в контуре с амплитудным значением напряжения. Как известно напряжение в контуре
U(t)=q(t)C=>qmax=Umax∗C(1) В тоже время I(t)=dqdt=q′(t). Величина заряда меняется по гармоническому закону q(t)=qmaxcos(ωt)=>I(t)=q′(t)=−qmax∗ωsin(ωt), таким образом мы получили, что Imax=−qmaxω(2) подставляем (1) в (2) Imax=−UmaxCωОсталось найти циклическую частоту ω=2πT, в то же время период равен по формуле Томсона T=2πLC−−−√, подставляем в (2)Imax=−Umax∗C2πT=−Umax∗C2π2πLC−−−√==−Umax∗CLC−−−√=−UmaxCL−−√Подставляем данные задачи Imax=−500В400∗10−12Ф10∗10−3Гн−−−−−−−−−−−√=−0,1А
V12=V21=√V1²+V2²=√30²+40²=50 км/ч