Найдем отношение значений амплитуды затухающих колебаний в моменты времени t и (рис. 3.1):
,
где β – коэффициент затухания.
Рис. 3.1
Натуральный логарифм отношения амплитуд, следующих друг за другом через период Т, называется логарифмическим декрементом затухания χ:
;
.
Выясним физический смысл χ и β.
Время релаксации τ – время, в течение которого амплитуда А уменьшается в e раз.
отсюда
Следовательно, коэффициент затухания β есть физическая величина, обратная времени, в течение которого амплитуда уменьшается в е раз.
Пусть N число колебаний, после которых амплитуда уменьшается в e раз. Тогда
m1-масса ружья
м2-масса пули
V1- скорость ружья после выстрела
v2-скорость пули после выстрела
m1v1=m2v2
v1=m2v2/m1
v1=10*200/3000=2/3 м/c