Распишем уравнения движения каждого автомобиля: S1 = Vo * t1 + a1*(t1)^2 / 2 S2 = Vo * t2 + a2*(t2)^2 / 2 В условии сказано, что они "выходят", значит, начальная скорость равна нулю. Также в условии сказано, что ускорения у них равны: S1 = a*(t1)^2 / 2 S2 = a*(t2)^2 / 2 Нам необходимо такое расположения автомобилей, в котором расстояние между ними равно 70 м: S2 - S1 = 70 м Занесем все в общую формулу: S2 - S1 = a*(t2)^2 / 2 - a*(t1)^2 / 2 = 70 (м) Вместо t2 подставим t1 + 10c: a*(t1 + 10)^2 / 2 - a*(t1)^2 / 2 = 70 Немного математики: (a*(t1 + 10)^2 - a*(t1)^2)/ 2 = 70 - под общий знаменатель (a*(t1^2 + 20*t1 + 100) - a*(t1)^2) / 2 = 70 (a* (t1)^2 + a*20*t1 + 100*a - a * (t1)^2) / 2 = 70 a*20*t1 +100*a = 140 Подставим значение а: 0,2*20*t1 + 100 * 0,2 = 140 4*t1 = 120 t1 = 30 c ответ: 30с
У= -2х + 3 линейная функция - график прямая. для построения графика находим 2 точки (прямая строится через 2 точки) первую при х=0 у = -2*0 +3 = 3 координаты точки а (0 ; 3) вторую при произвольном значении х, лучше легкостроимым, напр. х=3 у = -2*3 +3 = -6+3 = -3 координаты точки в (3 ; -3). через эти 2 точки строим прямую, являющуюся графиком данной функции. дальше по графику ищем значение функции для данного х и значения х для данного значения это легко вычисляется по формуле - сравните потом по графику а) зн функции (у), если значение аргумента (х) равно 2 у = -2*2+3 = -1 - зн. функции = -1 б) зн. аргумента (х), при котором зн. функции равно -1 -1 = -2*х+3 -4 = -2х 4=2х х = 4: 2 = 2 - значение аргумента = 2 удачи!
кинетическая энергия максимальна при прохождении груза через положение равновесия
минимальна - в точке наибольшего отклонения от положения равновесия