Две заряженные частицы влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции.Сравнить радиусы окружностей, которые описывают частицы, если у них одинаковые кинетические энергии.(q₂=2q₁, m₁=2m₂)
Итак, в условии указано, что траектория движения частиц окружность.
Конечная формула для радиуса известная , поэтому не требует отдельного вывода.
Радиус окружности, которую описывает ПЕРВАЯ частица
R1= √(2*m1*U/(q1*B))= √(2*2m2*U/(q1*B))= √(4*m2*U/(q1*B))=2√(m2*U/(q1*B))
Радиус окружности, которую описывает ВТОРАЯ частица
R2= √(2*m2*U/(q2*B))= √(2*m2*U/(2*q1*B))= √(m2*U/(q1*B))
R1 : R2 = 2√(m2*U/(q1*B)) : √(m2*U/(q1*B)) =2 :1
ответ R1 : R2 =2 :1
Две заряженные частицы влетают в однородное магнитное поле перпендикулярно вектору магнитной индукции.Сравнить радиусы окружностей, которые описывают частицы, если у них одинаковые кинетические энергии.(q₂=2q₁, m₁=2m₂)
Итак, в условии указано, что траектория движения частиц окружность.
Конечная формула для радиуса известная , поэтому не требует отдельного вывода.
Радиус окружности, которую описывает ПЕРВАЯ частица
R1= √(2*m1*U/(q1*B))= √(2*2m2*U/(q1*B))= √(4*m2*U/(q1*B))=2√(m2*U/(q1*B))
Радиус окружности, которую описывает ВТОРАЯ частица
R2= √(2*m2*U/(q2*B))= √(2*m2*U/(2*q1*B))= √(m2*U/(q1*B))
R1 : R2 = 2√(m2*U/(q1*B)) : √(m2*U/(q1*B)) =2 :1
ответ R1 : R2 =2 :1
Тело оторвется от желоба тогда, когда сила, действующая с его стороны на поверхность желоба, будет равной нулю. То есть, тогда, когда вес тела будет равным нулю.
По второму закону Ньютона в векторном виде имеем: mg + N = ma
В проекции на ось OY: mg + N = ma, откуда N = m (a - g)
Отметим, что по 3 закону Ньютона |N|=|p|
Из найденной формулы следует, что p = 0 тогда, когда a (центростремительное ускорение) = g
Теперь запишем закон сохранения энергии:
Скорость тела в ходе преобразований была выражена через центростремительное ускорение.