Пусть начальная высота монетки h, конечная высота монетки h. энергия перед началом движения: e = m g h импульс перед началом движения: p = 0 e и p не должны меняться в процессе движения. энергия, после спуска с первой горки: e = (m/2) v^2 + (4m/2) u^2 импульс, после спуска с первой горки: p = m v - 4 m u (u - скорость движения первой горки после спуска монетки) два уравнения и две неизвестные: v, u (m/2) v^2 + (4m/2) u^2 = m g h m v - 4 m u = 0 из второго уравнения u = 4v подставим в первое: (m/2) 16 u^2 + 4 (m/2) u^2 = m g h 20 u^2 = 2 g h u^2 = g h /10 u = sqr(g h/10) тогда v = 4 sqr(g h/10) энергия в момент остановки монетки на второй горке: e = (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h импульс в момент остановки монетки на второй горке: p = - 4 m u + m y + (5 m) y (y - скорость движения второй горки вместе с монеткой в момент остановки монетки относительно второй горки) опять получаем систему из 2 уравнений и двух неизвестных y, h: (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h = m g h - 4 m u + m y + (5 m) y = 0 из второго уравнения: 6 y = 4 u y = 2 u /3 первое уравнение (m/2) y^2 + (5m/2) y^2 + (4m/2) u^2 + m g h = m g h 3 y^2 + 2 u^2 + g h = g h подставим y = 2 u/3: (4/3) u^2 + 2 u^2 + g h = g h g h = g h - (10/3) u^2 подставим u = sqr(g h/10): g h = g h - g h/3 h = (2/3)h ответ: монетка поднимется на 2/3 от начальной высоты
Не буду рисовать рисунок ! так как у предыдущего ответа есть рисунок я буду по ней решать! треугольник равнобедренный , по свойству касательной проведенной с одной точки ob касательная к окружности, стало быть ве секущая , по формуле ob^2=bk*be =bk(ek+kb) со тоже секущая и она же высота равнобедренного треугольника , по свойству ce*ek=cl*le (точка l это точка где окружность пересекает высоту) у нас известно что ов это середина значит 40/2=20 найдем катет треугольника так как у нас треугольник равнобедренный то 2bc^2=40^2 bc=20√2 теперь найдем высоту треугольника h=√(20√2)^2-20^2 = 20 и найдем отрезок cl=20-2r = 2см ставим все в наше уравнение 400=bk(ek+kb) 40=(ce+ek)*ce се+ek+bk=20√2 решаем систему! сделаем замену чтобы удобней решалось bk=x ek=y ce=z 400=x(y+x) 40=y*(z+y) x+y+z=20√2 выразим y+z третьего уравнения y+z=20√2-x 40=y*(20√2-x) 400=x(y+x) 40=20√2y-yx 400=yx+x^2 40=20√2y-(400-x^2) 440=20√2y+x^2 y=440-x^2/20√2 получаем x =-√82-29√2/2 y=√82 =ek ответ √82