М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
jhghjlkuyfjy
jhghjlkuyfjy
08.06.2020 01:35 •  Физика

1. определите импульс , массу и энергию фотона с частотой 5*10^14 гц . 2. работа выхода фотоэлектронов из кадмия равна 4,08 эв. какова частота света , если скорость фотоэлектронов равна 7,2*10^5 м/с , масса их 9*10^-31 кг.

👇
Ответ:
penguin8
penguin8
08.06.2020
1.энергия фотона Е= h*v, где h-постоянная Планка и v-частота;
E=6,6*10^-34*5*10^14=33*10^-20 Дж; уравнение Эйнштейна E=mc^2, импульс же можно найти как mc, тогда p=E/c=33*10^-20/(3*10^8)=11*10^-28кг*м/с (с-скорость света, константа, а ответ мы вырзили в килограммах, умноженных на метр, делённый на секунду); теперь по аналогии с импульсом найдём и массу: m=E/c^2=3,7*10^-36 кг
2. здесь будем использовать ур-е Эйнштейна для фотоэффекта(вырывания электронов):
hv=Aвыхода+mv^2/2; константы я вам назвал, они остаются такими же, посчитайте сами, в условии всё известно
4,5(9 оценок)
Открыть все ответы
Ответ:

Плотность гранита: ρ₁ = 2670 кг/м³

Плотность меди:  ρ₂ = 8900 кг/м³

Так как массы шаров одинаковы, то объем медного шара меньше объема гранитного:

          ρ = m/V

          ρ₂ > ρ₁   =>   V₂ < V₁

Очевидно, что выталкивающая сила в воде будет больше у шара с бо'льшим объемом. Тогда при погружении шаров воду:

          P'₁ = P₁ - Fₐ₁ = P₁ - ρ(в)gV₁

          P'₂ = P₂ - Fₐ₂ = P₂ - ρ(в)gV₂

Так как Р₁ = Р₂  и  ρ(в)gV₁ > ρ(в)gV₂, то:

          P'₁ < P'₂

Таким образом, при погружении весов в воду чашка с медным шаром перевесит чашку с гранитным.

4,4(35 оценок)
Ответ:
sashok0031
sashok0031
08.06.2020
Двигатели воздушного охлаждения отличаются более простой конструкцией: у них нет водяного насоса, радиатора (изготавливаемого, к тому же, из дорогостоящих цветных металлов), термостата, патрубков, хомутов, дополнительных труб подвода и отвода жидкости.Они обладают высокой ремонтопригодностью: наличие индивидуальных цилиндров позволяет, в случае необходимости, производить замену отдельных цилиндров, что делает возможным ремонт даже в полевых условиях. В ДЖО в этом случае необходима либо замена блока цилиндров, либо выпрессовка гильз цилиндров с последующей их заменой.Их отличает высокая живучесть. Повреждение радиатора и патрубков в ДЖО, а также простое ослабление хомутов на водяных патрубках обуславливает невозможность эксплуатации в связи с утечкой жидкости. Это особенно актуально в сельской местности и отдаленных районах, где далеко не всегда можно найти антифризы, а также при эксплуатации в условиях экстремальных температур. При работе в условиях жаркого климата вызывает опасность процесс выкипания охлаждающей жидкости, затруднительна эксплуатация также и в районах с повышенной запыленностью – при уборке, например, хлопка, или в условиях пустынь и степей, поскольку в этом случае радиаторы системы жидкостного охлаждения быстро забиваются.

Всех этих недостатков лишены двигатели воздушного охлаждения. Более того, даже повреждение оребрения цилиндров и головок цилиндров не помешает дальнейшей эксплуатации двигателей. В боевых условиях важным преимуществом двигателей воздушного охлаждения является также значительно меньшее время вывода двигателя на рабочий режим, поскольку не требуется прогрева жидкости, что особенно ярко проявляется в зимнее время. Вышеперечисленные преимущества обусловливают и меньшие эксплуатационные затраты
В Концерне «Тракторные заводы» постоянно ведутся работы по совершенствованию двигателей воздушного охлаждения в направлении как обеспечения современных международных требований к экологической чистоте, так и повышению их агрегатной мощности:

совершенствование системы газообмена за счет снижения сопротивления впускного и выпускного трактов, переход на трех- и четырехклапанные головки цилиндров, согласование вихревого движения заряда с характеристиками топливоподачи и геометрией камеры сгорания;оптимизация характеристик системы турбонаддува, в том числе за счет применения охлаждения наддувочного воздуха;модернизация системы топливоподачи за счет управления углом опережения впрыскивания топлива, повышения интенсивности подачи и максимальных значений впрыскивания топлива, а также увеличения количества сопловых отверстий распылителя;переход на камеру сгорания открытого типа;применение регулируемой по нагрузке и скоростному режиму рециркуляции отработавших газов (ОГ) с обеспечением охлаждения перепускаемых газов.

Так, в 2008 году на макетном образце трехцилиндрового двигателя с турбонаддувом были реализованы европейские экологические нормы уровня Stage-3A за счет применения охлаждения надувочного воздуха. А в 2013 году переход с двухклапанных головок цилиндров (ГЦ) на трехклапанные позволил разнести по разным сторонам ГЦ впускные и выпускной канал, снизив, тем самым, нежелательный подогрев впускного воздуха и, соответственно, тепловую напряженность двигателя (рис.1). Последнее мероприятие обеспечило возможность отказаться от наклонного расположения форсунки (35о к вертикали), перейдя к вертикальному, и применить многосопловые распылители (с 6-ю отверстиями вместо традиционных 3-х), позволившие повысить степень равномерности распределения топлива по камере сгорания (рис.2). Результатом стало значительное улучшение топливной экономичности двигателей (на 6 - 8%) и увеличение агрегатной мощности (на 15 - 25%).

4,5(47 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ