Предположение: Пуля не деформируется. Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть .
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b: Земля проявляет вискозность только при достаточной скорости пули, допустим при . Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона: Пусть . Тогда дифференциальное уравнение имеет вид Решением является линейная комбинация функций:
То есть Тогда Так как , . Тогда Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния. Найдем это расстояние: Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока , то есть Тогда Соответственно При удвоении начальной скорости, конечная координата равна: Тогда отношение нового пути к старому равно , При, допустим, , это отношение равно .
Из аэродинамики известна следующая формула для соотношения давлений и площадей: p/p0=ρ/ ρ0=e^(-z/H), где z- высота исследуемого слоя воздуха (в метрах; вверх от поверхности Земли) p – давление в исследуемой точке p0 – давление у поверхности Земли ρ и ρ0 – плотности в исследуемой точке и у поверхности e – основание натурального логарифма, равное 2,718 H – высота однородной атмосферы, т. е. , такая высота, которую имел бы слой воздуха, если бы он был несжимаем. Она равна 8425 м. Однако эта формула не дает взаимосвязи плотностей с температурой в явном виде. Для этого используется другая формула: ρ/ρ0=(1-(β• z /T0))^((T0•γ0/ β• p0)-1) здесь β – градиент температуры, град/м, т. е, величина, показывающая на сколько градусов изменяется температура при изменении высоты z на один метр; T0 – температура у пов-сти Земли γ0 – удельный вес воздуха, Н/м^3. Поскольку из условия задачи температура с высотой не меняется, то ее градиент β равен 0. Из второй формулы получим ρ/ρ0=(1-0)^∞ =1, т. е, плотность с высотой так же не меняется, а зависит только от давления. Тогда остается справедливым уравнение 1. Подставляя в нее значения, имеем p/p0 =2,718^(-(-1000)/8425)=1,126. Тогда давление на интересующей нас высоте p =1,126p0. Вот примерно так))) )
Количество избыточных электронов:
N = q / qo = 8*10⁻⁸ / 1,6*10⁻¹⁹ = 5*10¹¹ электронов