Дано:
s = 60 м
a₁ = a₂ = 1 м/с²
υ = 2 м/с
υ₀ = 0 м/с
t - ?
Ну, вроде как, всё должно быть просто. Сначала точка покоится, потом ускоряется до 2 м/с, затем движется равномерно со скоростью 2 м/с, затем замедляется и останавливается. Ускорение при разгоне и торможении - одинаковое. Мы можем разделить всё движение на три составных: два с ускорением и одно равномерное.
s₁ = υ₀*t₁ + a₁*t₁²/2
s₂ = υ*t₂
s₃ = υ₀'*t₃ - a₂*t₃²/2 - "минус", т.к. а₂ направлено против движения.
Тогда общее перемещение:
s = s₁ + s₂ + s₃ = υ₀*t₁ + a₁*t₁²/2 + υ*t₂ + υ₀'*t₃ - a₂*t₃²/2
Т.к. υ₀ = 0, то:
s = a₁*t₁²/2 + υ*t₂ + υ₀'*t₃ - a₂*t₃²/2
Выразим t₁ и t₂ через формулу скорости:
υ = υ₀ + a₁*t₁ = 0 + a₁*t₁ => t₁ = υ/a₁
υ = υ₀' - a₂*t₃ => 0 = υ₀' - a₂*t₃ => υ₀' = a₂*t₃ => t₃ = υ₀'/a₂
υ₀' = υ => t₃ = υ/a₂ - делаем замену t₁, t₃ и υ₀':
s = a₁*(υ/a₁)²/2 + υ*t₂ + υ*(υ/a₂) - a₂*(υ/a₂)²/2 = υ²/(2a₁) + υ*t₂ + υ²/a₂ - υ²/(2a₂)
Т.к. a₁ = a₂, то сумма υ²/(2a₁) + (- υ²/(2a₂)) = 0 =>
s = υ*t₂ + υ²/a₂
υ*t₂ = s - υ²/a₂ = (sa₂ - υ²)/a₂
t₂ = (sa₂ - υ²)/(υa₂) = s/υ - υ/a₂
Тогда общее время:
t = t₁ + t₂ + t₃ = υ/a₁ + s/υ - υ/a₂ + υ/a₂ = υ/a + s/υ - υ/a + υ/a = s/υ + υ/a = 60/2 + 2/1 = 30 + 2 = 32 c
ответ: 32 с.
Дано:
ν = 5,5*10¹⁴ Гц
d = 10^-5 м
L = 2 м
c = 3*10⁸ м/с
h - ?
Условие для наблюдения дифракционной картины:
d*sinφ = +/-k*λ
λ = c*T
T = 1/ν => λ = c*(1/ν) = c/ν
d*sinφ = +/-k*(c/ν)
Для максимума первого порядка угол φ небольшой - настолько, что его синус практически равен его тангенсу:
sinφ = tgφ, ну а с тангенса угла φ мы сможем найти расстояние от центрального максимума до первого. Берём первый максимум k = 1 и выводим формулу для тангенса угла φ:
d*tgφ = k*(c/ν) = c/ν
tgφ = (c/ν)/d = c/(dν)
Вспоминаем: тангенс угла - это отношение противолежащего катета к прилежащему. А у нас как раз получается прямоугольный треугольник. Вторичные лучи в решётке идут почти на все 180°. Если мы выделим лучи для первого и центрального максимумов, то нам будут интересны только два из них: идущий прямо - это центральный луч, и изменивший направление по отношению к центральному на угол φ. Оба луча падают на экран. Между точками, куда упали лучи, получается расстояние h. h - это прилежащий катет получившегося треугольника. L - расстояние от начала центрального луча до точки его падения на экран - прилежащий катет. Ну а начало и конец луча под углом - это гипотенуза. Значит, тангенс - это отношение катетов (противолежащего к прилежащему):
tgφ = h/L
tgφ = c/(dν) - приравниваем и выражаем h:
h/L = c/(dν)
h = Lc/(dν) = 2*3*10⁸/(10^-5*5,5*10¹⁴) = 6*10⁸/(5,5*10⁹) = (6/5,5)*10^-1 м = 1,090909...*0,1 = 1,1*0,1 = 0,11 м = 11 см
ответ: примерно 11 см.