осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения[1]. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен
{\displaystyle T=2\pi {\sqrt {L \over g}}}T=2\pi {\sqrt {L \over g}}
и не зависит, в первом приближении, от амплитуды колебаний и массы маятника. Здесь g — ускорение свободного падения.
Математический маятник служит простейшей моделью физического тела, совершающего колебания: она не учитывает распределение массы. Однако реальный физический маятник при малых амплитудах колеблется так же, как математический с приведённой длиной.
Объяснение:
Дано:
ΔΤ = 0,99 °С
с = 4200 Дж/(кг*°С)
g = 9,8 м/с²
h - ?
Вся потенциальная энергия капли перейдёт в кинетическую энергию, а вся кинетическая - в тепловую. Получается, что механическая энергия капли превратится во внутреннюю энергию (считаем, что энергия той части земной поверхности, куда упала капля, не изменяется). Капля обладает внутренней энергией и перед ударом. Следовательно, после удара внутренняя энергия изменится - она увеличится на то значение, которое имеет механическая энергия. То есть:
Uο - начальная внутренняя энергия
U - конечная внутренняя энергия
ΔU = U - Uo - изменение внутренней энергии
Е - механическая энергия
Е = ΔU, где ΔU = Q - изменение внутренней энергии равно полученному количеству теплоты. Тогда:
Е = Q
Е = Еп_max = mgh
Q = cmΔΤ =>
mgh = cmΔΤ | : m
gh = cΔΤ | : g
h = cΔΤ/g = 4200*0,99/9,8 = 424,28... = 424 м
ответ: 424 м.