Вычислить напряженность электрического поля, созданного двумя коаксиальными цилиндрами, заряженными с одинаковой поверхностной плотностью заряда 2 нкл/м^2; радиусы цилиндров 10 см и 5 см. точка находится на расстоянии 8 см от оси цилиндров
Не сказано, что цилидры бесконечные, равно как и то, что расстояние от общей оси цилиндров до искомой точки намного меньше длины цилиндров. А без таких оговорок решение такой задачи становится несопоставимо более сложным. К тому же, для решения конечной задачи требуется и сама фактическая длина цилиндров, а поскольку такая длина не указана, то будем считать, цилиндры бесконечными.
В этом случае, по теореме Гаусса:
K = Q/εo ; где K – полный поток поля по замкнутой поверхности, Q – заряд, окружённый этой поверхностью, а εo – диэлектрическая проницаемость вакуума.
Рассмотрим замкнутую поверхность в виде поперечно срезанного коаксиального заданным цилиндра с радиусом L = 8 см и длиной x. Ясно, что в эту поверхность войдёт только меньший цилиндр, а значит, большой внешний для данной точки цилиндр вообще не будет влиять на поток электростатического поля через выбранную поверхность.
Учтём, что в силу симметрии и бесконечности заряженных цилиндров, поле в любой точке будет направлено перпендикулярно к оси цилиндров, и будет иметь напряжённость – модуль которой чётко определяется расстоянием до оси.
Из этих предпосылок следует, что поток электростатического поля через торцы выбранной цилиндрической поверхностности – окажется равным нулю. А поток чрез её боковую поверхность – окажется равным произведению её площади на модуль напряжённоости поля на расстоянии L от оси.
K = Q/εo ;
2πLxE = 2πrxσ/εo ;
LE = rσ/εo , где r и σ – радиус и поверхностная плотность заряда меньшего цилиндра.
Итак, что у нас происходит. Кусок льда, оказавшись в воде, сначала нагревается до температуры плавления, затем тает. При этом вода в сосуде охлаждается. Коль лед не весь растаял, есть основания полагать, что процесс завершился при температуре 0° С. Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁: (1) Тут: с₁ - удельная теплоемкость воды 4200 Дж/(кг·К) m₁ - масса воды 1 кг (1л - 1кг) T₀ - начальная температура воды 10°С T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ : (2) Где: с₂ - удельная теплоемкость льда 2060 Дж/(кг·К) m₂ - начальная масса льда T₂ - начальная температура льда -20°С T₁ - конечная температура воды и льда 0°С m₃ - масса растаявшего льда. λ - удельная теплота плавления льда 334*10³ Дж/кг При этом: кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂ (4) Теперь из 4 выражаем m₂:
Параллельное соединение в электротехнике, соединение двухполюсников (обычно или потребителей, или источников электроэнергии) , при котором на их зажимах действует одно и то же напряжение. Параллельное соединение — основной подключения потребителей электроэнергии
при Параллельном соединение включение или выключение отдельных потребителей практически не влияет на работу остальных (при достаточной мощности источника) . Токи в параллельно соединённых нагрузках (не содержащих источников эдс) обратно пропорциональны их сопротивлениям; общий ток Параллельное соединение равен сумме токов всех ветвей — алгебраической (при постоянном токе) или векторной (при переменном токе) . Параллельное соединение источников электроэнергии, например генераторов на электростанции, применяют тогда, когда мощность одного источника недостаточна для питания всех нагрузок (см. также Электрическая цепь).
В этом случае, по теореме Гаусса:
K = Q/εo ; где K – полный поток поля по замкнутой поверхности, Q – заряд, окружённый этой поверхностью, а εo – диэлектрическая проницаемость вакуума.
Рассмотрим замкнутую поверхность в виде поперечно срезанного коаксиального заданным цилиндра с радиусом L = 8 см и длиной x. Ясно, что в эту поверхность войдёт только меньший цилиндр, а значит, большой внешний для данной точки цилиндр вообще не будет влиять на поток электростатического поля через выбранную поверхность.
Учтём, что в силу симметрии и бесконечности заряженных цилиндров, поле в любой точке будет направлено перпендикулярно к оси цилиндров, и будет иметь напряжённость – модуль которой чётко определяется расстоянием до оси.
Из этих предпосылок следует, что поток электростатического поля через торцы выбранной цилиндрической поверхностности – окажется равным нулю. А поток чрез её боковую поверхность – окажется равным произведению её площади на модуль напряжённоости поля на расстоянии L от оси.
K = Q/εo ;
2πLxE = 2πrxσ/εo ;
LE = rσ/εo , где r и σ – радиус и поверхностная плотность заряда меньшего цилиндра.
E = (r/L)σ/εo ;
Вычисляем:
E ≈ (5/8) ( 2 / 1 000 000 000 ) / ( 8.85 / 1 000 000 000 000 ) =
= 1250 / 8.85 ≈ 141 В/м .