Изменится ли направление вращения якоря, если изменится направление тока: а) в обмотке якоря электродвигателя; б) в обмотке электромагнитов; в) одновременно в обмотках якоря и электромагнита
Для двигателя постоянного тока при изменении направления тока в обмотке якоря - изменится направление вращения. Также изменится при изменении тока в обм.электромагнитов. При одновременном изменении тока в обм.якоря и катушках магнитов - направление вращения якоря не изменится.
ТЕПЛОПЕРЕДАЧА (или теплообмен) - один из изменения внутренней энергии тела (или системы тел) , при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы. Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними. Теплота переходить только от тела с более высокой температурой к телу менее нагретому. Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене. Существует три вида теплопередачи: теплопроводность, конвекция и излучение.
ТЕПЛОПРОВОДНОСТЬ - перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т. п.) . Приводит к выравниванию температуры тела. Не сопровождается переносом вещества! Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей, газов. Теплопроводность различных веществ разная. Существует зависимость теплопроводности от плотности вещества.
КОНВЕКЦИЯ - это перенос энергии струями жидкости или газа. Конвекция происходит за счет перемешивания вещества жидкой или газообразной среды. Конвекция невозможна в твёрдых телах. Существует зависимость скорости конвекции от плотности вещества и от разницы температур соприкасающихся тел. Конвекция может быть естественной и принудительной, например,
Ядерная реакция — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии. Спонтанные (происходящие без воздействия налетающих частиц) процессы в ядрах — например, радиоактивный распад — обычно не относят к ядерным реакциям. Для осуществления реакции между двумя или несколькими частицами необходимо, чтобы взаимодействующие частицы (ядра) сблизились на расстояние порядка 10^-15 м, то есть характерного радиуса действия ядерных сил. Ядерные реакции могут происходить как с выделением, так и с поглощением энергии. Реакции первого типа, экзотермические, служат основой ядерной энергетики и являются источником энергии звёзд. Реакции, идущие с поглощением энергии (эндотермические) , могут происходить только при условии, что кинетическая энергия сталкивающихся частиц (в системе центра масс) выше определённой величины (порога реакции) .
Цепная ядерная реакция — последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами, полученными при делении ядер в предыдущем поколении. При делении тяжелых ядер под действием нейтронов возникают новые нейтроны. Например, при каждом делении ядра урана 92U235 в среднем возникает 2,4 нейтрона. Часть этих нейтронов снова может вызвать деление ядер. Такой лавинообразный процесс и называется цепной реакцией.
Также изменится при изменении тока в обм.электромагнитов.
При одновременном изменении тока в обм.якоря и катушках магнитов - направление вращения якоря не изменится.