Какую скорость должен иметь Искусственный спутник Земли, чтобы обращаться по круговой орбите на высоте 600км(радиус Земли=6400) над поверхностью Земли? Каков период его обращения?
H=600 км=600*10^3 м
R=6400 км= 6.4*10^6 м
G = 6,67384(80)·10−11 м³·с−2·кг−1, или Н·м²·кг−2.
Условие обращаться по круговой орбите:
центробежная сила Fц должна быть равна силе тяготения Fт/притяжения к Земле
Fц= m*v^2/(R+h)
Fт= G*m*M/(R+h)^2
Приравняем правые части
m*v^2/(R+h) = G*m*M/(R+h)^2
преобразуем
v^2 = G*M/(R+h)
v = √ (G*M/(R+h))
где М- масса Земли
R - радиус Земли
G - гравитационная постоянная
Т=2pi(R+h)/v
Со скоростью - все верно: v = v₀ + at
и через 1 секунду после начала движения скорость тела будет:
v = 1 + 0,5 · 1 = 1,5 (м/с)
А вот с пройденным расстоянием не все так просто. Дело в том, что скорость тела возрастает не дискретно и моментально при прохождении одной секунды, а линейно и поступательно. Это означает, что скорость тела внутри любого промежутка времени не остается постоянной, а продолжает расти. То есть можно говорить о том, что при данном виде движения график зависимости скорости от времени представляет собой прямую линию, а вот график зависимости пройденного расстояния от времени является частью параболы:
s = v₀t + at²/2
И через одну секунду после начала движения данное тело пройдет расстояние:
s₁ = 1 · 1 + 0,5 · 1 : 2 = 1,25 (м)
Определим КПД 800Дж/900Дж*100%≈ 88.8%