М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sumochkaaaaa
sumochkaaaaa
29.03.2022 00:05 •  Физика

Как мы получаем знания о явлениях природы

👇
Ответ:
lineage29201682
lineage29201682
29.03.2022
Ми получаем знания с наблюденій І опитов
4,8(65 оценок)
Ответ:
Artem19092002
Artem19092002
29.03.2022
Мы получаем знания с наблюдений и опытов
4,8(12 оценок)
Открыть все ответы
Ответ:
VarLen20005
VarLen20005
29.03.2022

ответ Если принять ускорение свободного падения g = 10 м/с^2, то можно сразу же сказать, что мальчик падал до поверхности воды равно 1 секунду, поскольку высота, с которой он прыгнул, равна 5 метрам. Эту величину можно получить «строго научно» если использовать формулу для определения длины пройденного пути при равноускоренном движении. S = Vo*t + a*t^2/2.  Но, поскольку начальная скорость мальчика в вертикальном направлении равнялась 0, то    S =  a*t^2/2. Для случая падения, когда ускорение равно g,  путь S =  g*t^2/2. Из этого выражения следует, что t^2 = 2S/g. Подставив известные величины, найдем, что t^2 = 2*5/10 = 1. Таким образом, показано, что время свободного падения с высоты 5 метров равно 1 секунде. Вертикальную скорость, какую за это время наберет мальчик, найдем по формуле Vв = g*t = 10*1 = 10 м/с. Горизонтальная составляющая полной скорости (Vг ) не меняется и равна 6 м/с

Вектор полной скорости в момент касания мальчиком воды найдем по теореме Пифагора Vп^2 = Vг^2 + Vв^2 = 6^2 + 10^2 = 136.  И Vп = 11,66 м/с. Угол между вектором скорости и горизонтом будет равен arctg(Vв/Vг) = arctg(10/6) = 59,4 градуса  

4,5(73 оценок)
Ответ:
elinaaak
elinaaak
29.03.2022

Пусть длина цепи: L

Пусть длина свисающей части: x

Тогда длина части, оставшейся на столе: L - x

Если масса цепи: m, то масса свисающей части: m x /L,

масса лежащей на столе части: m (1 - x / L)

1) Часть, лежащая на столе:

Если силы трения нет, то на ту часть цепи, что еще на столе, по вертикали действуют сила тяжести и сила реакции опоры, что уравновешивают друг друга.

По горизонтали на границу этой части действует горизонтальная сила, стягивающая ее со стола. Уравнение движения (проекция на горизонтальное направление):

m (1 - x / L) a1 = T

a - горизонтальное ускорение части, лежащей на столе.

T - сила, с которой тянет настольную часть цепи ее свисающая часть.

2) Часть, свисающая вниз.

На нее действуют силы в горизонтальном направлении. В вертикальном направлении вниз действует сила тяжести:

m (x / L) g

И вверх действует сила T, с которой противодействует стягиванию остальная часть цепи. Тогда уравнение движения (проекция на вертикальное направление):

m (x / L) a2 = m (x / L) g - T

3) Помимо пренебрежения трением, принимаем еще допущение о том, что горизонтальная скорость части цепи, лежащей на столе, не достаточно велика, чтобы цепь перестала свисать, прижимаясь к углу стола. Тогда проекции ускорений a1 и a2 равны:

a = x''(t)

4) Тогда получаем два уравнения с двумя неизвестными:

m (1 - x / L) x '' = T

m (x / L) x'' = m g (x / L) - T

Исключаем из уравнения T:

m (x / L) x'' = m g (x / L) - m (1 - x / L) x''

Или:

x '' = (g / L) x

Представим скорость в виде:

x'(t) = v(t) = v(x(t))

Тогда:

x''(t) = dv/dt = (dv/dx) (dx/dt) = v (dv/dx)

Тогда уравнение примет вид:

v (dv/dx) = (g / L) x

Разделяем переменные:

v dv = (g / L) x dx

Умножаем на 2 и интегрируем:

v^2 = Const + (g / L) x^2

Избавляемся от квадрата слева:

v = sqrt[g/L] sqrt(C + x^2)

(выбран знак +, поскольку x увеличивается, и dx/dt = v > 0)

При t = 0, когда x равен своему известному начальному значению (обозначим x0), цепь покоится, что есть dx/dt = v = 0, тогда:

0 = sqrt[g/L] sqrt(C + x0^2)

То есть: C = - x0^2, тогда:

v = sqr[g/L] sqrt(x^2 - x0^2)

или:

dx/dt = sqrt[g/L] sqrt(x^2 - x0^2)

Разделим переменные:

dx / sqrt(x^2 - x0^2) = sqrt[g/L] dt

Интегрируем:

arcch(x / x0) = sqrt[g/L] t + C

При t = 0, x = x0:

arcch(1) = C

Получаем:

arcch(x / x0) = arcch(1) + sqrt[g/L] t

От сюда выражаем t:

t = sqrt[L/g] { arcch(x / x0) - arcch(1) }

t = sqrt[L/g] { arcch(L / x0) - arcch(1) }

L = 6(м), x0 = 1(м)

4,6(42 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ