Дано:
V₁ = 28 км/ч
V₂ = 26 км/ч
R = 30 м = 0,03 км
Пусть путь, который пробежит второй спортсмен до встречи = 2*π*R*k (k - коэффициент).
Так как они бегут по окружности, и первый спортсмен двигается быстрее, то на тот момент, когда первый догонит второго, первый пройдёт 2*π*R*(k + 1). Время пути одинаковое, тогда:
2*π*R*(k + 1) / V₁ = 2*π*R*k / V₂
(2*π*R*k + 2*π*R)*V₂ = 2*π*R*k*V₁
2*π*R*(k*V₂ + V₂ - k*V₁) = 0
k*(V₂ - V₁) = - V₂
k = - V₂ / (V₂ - V₁)
k = - 26 / (26 - 28) = 13.
Время встречи от начала забега произойдёт:
t = 2*π*R*k / V₂ ;
t = 2*π*0,03*13 / 26 = 0,0924 ч ≈ 339 c
ответ: 339 с.
t1=7 мин. 420 с.
V=14 м/с.
S=530 м.
t2=44 с.
Решение:
S=Vt
Vср.=(S1+S2...):(t1+t2...)
Вычисления:
t=420+44=464 с.
V2=530:464=1 м/с.
V=14+1=15 м/с.
ответ: 15м/с.