c1=4,2 кДж/(кг*К), λ=330000 Дж/кг, V1=3,7 л=3,7*10*-3 м³, t1= 18°С, m2=0,5 кг, t2= 0°С. t= 8°С. m-? Вода в сосуде отдает количество теплоты Q1=c1ρV1(t1-t). Лед, содержащийся в мокром снеге получит количество теплоты для плавления Q2=λ(m2-m) и нагревания получившейся воды от t2= 0°С до t= 8°С Q3=c1(m2-m)(t-t2). Вода, содержащаяся в мокром снеге получает количество теплоты для нагревания от t2= 0°С до t= 8°С Q4=c1m(t-t2). Уравнение теплового баланса Q1=Q2+Q3+Q4. c1ρV1(t1-t)=λ(m2-m)+c1(m2-m)(t-t2)+c1m(t-t2). c1ρV1(t1-t)=λm2-λm+c1m2(t-t2)-c1m(t-t2)+c1m(t-t2). c1ρV1(t1-t)=λm2-λm+c1m2(t-t2). λm=λm2+c1m2(t-t2)-c1ρV1(t1-t). m=(λm2+c1m2(t-t2)-c1ρV1(t1-t))/λ. m=(330000*0,5+4200*0,5*8-4200*3,7*10)/330000 = (165000+16800-155400)/330000 = 0,08 кг= 80 г.
Предпочтительнее тот при использовании которого на подъём придётся затратить меньшее время. Пусть l м - длина эскалатора, тогда при использовании первого Антону придётся преодолеть расстояние 3l/4 м со скоростью 3-1=2 м/с. Отсюда время подъёма t1=(3l/4)/2=3l/8 с. При использовании второго Антон сначала пробежит вниз по эскалатору расстояние l/4 м со скоростью 3+1=4 м/с, на что уйдёт время t2=(l/4)/4=l/16 с. Затем Антон пробежит вверх по эскалатору расстояние l с той же скоростью 4 м/с, на что уйдёт время t3=l/4 с. Таким образом, при использовании второго время до подъёма составит t2+t3=l/16+l/4=5l/16 с. Так как 3l/8=6l/16>5l/16, то t1>t2+t3. Значит, предпочтительнее второй