Задача очень простая, на умение записывать уравнения движения тел в соответствующих осях. Рисунок для решения мы приводим справа, для его увеличения нажмите на него.
Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22 Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
Уравнение движения первого тела x1=-v0t+0.5at^2; a=g*sin(b), b- угол наклона плоскости. для второго тела x2=v0t+0.5at^2; Скорость первого тела равна: v1=x1'=-v0+at1; В момент остановки она равна нулю: v0=at1; Отсюда t1=v0/a; Находим расстояния, пройденные телами за это время t1; x1=-v0*v0/a+0.5a*v0^2/a^2; x1=-v0^2/a+0.5v0^2/a; x1=-0.5v0^2/a; (нас интересует отношение расстояний, поэтому берём модуль числа) x1=0.5v0^2/a;
x2=v0*v0/a+0.5a*v0^2/a^2; x2=1.5v0^2/a;
x2/x1=(1.5v0^2/a)/(0.5v0^2/a); x2/x1=3. Второе тело путь в три раза больше, чем первое.
V=m/ρ=1000000/820 м3=1219.51219 м3
Значит понадобиться
n=V/u=1219.51219/50 ≈25
ответ:25