1) Коробка приобретет импульс, численно равный потери импульса пули: Δp(пуля) = p2 - p1 = m1V0/2 - m1V0 = 0,001 (75 - 150) = - 0,0075 кг*м/с 2) Зная импульс, который приобрела коробка, можем вычислить ее скорость: p = m2 V2 => V2 = p / m2 = 0,075 / 0,05 = 1,5 м/с 3) V2 - это ее начальная скорость. Конечная, очевидно, будет равна нулю. По формуле из кинематики найдем ускорение, которое приобрела коробка: S = - V0^2 / 2a => a = - V0^2 / 2S = - 2,25 / 0,6 = - 3,75 м/с^2 4) На коробку действует только сила трения. По второму закону Ньютона в проекции имеем: - u mg = ma => u = - a / g = 3,75 / 10 = 0,375
В общем, нужно разместить ось OX, тело 1 будет двигаться вдоль этой оси. Предположим, тело 2 двигается против этой оси, тогда: m1v1-m2v2=(m2+m1)*v' 2-2*x=6*0.3 2x=2-1.8 2x=0.2 x=0.1. Раз нет минуса, значит, с направлением мы угадали, тело 2 двигалось против оси OX со скоростью 0.1 м/c
ответ: Импульс тела 1 до столкновения был равен p1=m1v1= 2кг*м/c Импульс тела 2 до столкновения был равен p2=m2v2=0.2кг*м/c Импульс тел после столкновения стал равен p'=(m1+m2)*v'= 0.3*6= 1.8 кг*м/c Вектор скорости тела 2 был антинаправлен вектору скорости тела 1. Тело 2 двигалось со скоростью 0.1 м/c
Решение:q=I*tq=840КЛ ответ:840 Кл