Объяснение:
Так как по условию грузик небольшой, то его размерами можно пренебречь и считать его материальной точкой. Так как по условию нить - лёгкая и нерастяжимая, то её массой и упругими силами можно пренебречь. Тогда колеблющийся грузик можно считать математическим маятником. Период колебаний такого маятника T=2*π*√(l/g), где l - длина нити, g - ускорение свободного падения. Так как период не зависит от массы грузика, то при увеличении его массы в β раз период не изменится. Если длину нити увеличить в α раз, то её длина станет равной l1=l*α, и тогда период колебаний станет равным T1=2*√(l1/g)=2*π*√(l*α/g). Отсюда T1/T=√α, т.е. период колебаний увеличится в √α раз. Если известно время t N колебаний, то N=t/T=(t*√g)/(2*π*√l). Если известно число колебаний N, то время t=T*N=2*π*N*√(l/g). Если известны N и t, то l=t²*g/(4*π²*N²).
Не плотность резинки а жёсткость.
Дано:
p1 = 1500 кг/м³
р2 = 2000 кг/м³
V1 = 2 л = 0,002 м³
V2 = 3 л = 0,003 м³
V = 0,1 л = 0,0001 м³
k = 10 Н/м
g = 10 Н/кг
Δx - ?
Сила упругости резинки будет уравновешивать силу тяжести, действующую на пробу:
Fупр = Fтяж
Сила тяжести равна:
Fтяж = mg, где m - масса пробы
m = p*V - объём известен, тогда найдём плотность пробы:
p = m'/V', где m' - масса смеси, а V' - её объём
m' = m1 + m2 = p1*V1 + p2*V2
V' = V1 + V2 => p = m'/V' = (p1*V1 + p2*V2)/(V1 + V2), тогда:
m = p*V = V*(p1*V1 + p2*V2)/(V1 + V2)
Тогда сила тяжести равна:
Fтяж = mg = V*g*(p1*V1 + p2*V2)/(V1 + V2)
Возвращаемся к равенству сил:
Fупр = Fтяж
Fупр = k*Δx =>
=> k*Δx = V*g*(p1*V1 + p2*V2)/(V1 + V2) - выражаем Δx и находим значение:
Δx = V*g*(p1*V1 + p2*V2)/(k*(V1 + V2)) = (0,0001*10*(1500*0,002 + 2000*0,003))/(10*(0,002 + 0,003)) = (0,001*(3 + 6))/(10*0,005) = 0,009/0,05 = 9/1000 * 100/5 = 9/10 * 1/5 = 9/50 = 0,18 м = 18 см
ответ: 18 см.
P = pVg = 2300 * 2 * 10 = 46000 Н
Где p это плотность
Вес тела в воде
P = Вес в воздухе - сила архимеда = pVg - p(воды)gV = 46000 - 1000*10*2 = 46000 - 20000 = 26000 Н