М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
илья213123
илья213123
02.10.2022 21:21 •  Физика

Как взаимодействуют одноименные полюсы магнитов? а) отталкиваются друг от друга б) притягиваются друг к другу в) они не взаимодействуют г) отталкиваются только тогда, когда находятся близко к друг другу

👇
Ответ:
marinakrivoshe
marinakrivoshe
02.10.2022
Одноимённые полюса магнита отталкиваются друг от друга
Правильный ответ А
4,4(4 оценок)
Открыть все ответы
Ответ:
starlitt
starlitt
02.10.2022

Решение задач

на тонкие линзы

А.ЧЕРНОУЦАН

Д

ЛЯ РЕШЕНИЯ ЗАДАЧ С ТОНКИМИ ЛИНЗАМИ НАДО

знать совсем немного. Напомним их основные свойства.

1) Характер линзы зависит от радиусов образующих ее

сферических поверхностей и от показателя преломления

материала линзы относительно окружающей среды

n n n = л ср . При n > 1 двояковыпуклая и плосковыпуклая

линзы – собирающие, двояковогнутая и плосковогнутая

линзы – рассеивающие; при n < 1 – наоборот. Эти утверждения следуют из формулы для фокусного расстояния F:

( )

1 2

1 1 1

n 1

F R R

Ê ˆ

= - + Á ˜ Ë ¯ ,

где радиус выпуклой поверхности считается положительным, а радиус вогнутой – отрицательным. Если F положительно, то линза собирающая, в противном случае – рассеивающая. Эту формулу знать полезно, но необязательно.

Пример 1 (ЕГЭ). Из очень тонких одинаковых сферических стеклянных сегментов изготовлены линзы, представленные на рисунке 1. Если показатель преломления глицерина больше, чем показатель преломления воды, то собирающая линза представлена на рисунке: 1); 2); 3); 4).

(ответ: 4).)

2) Для решения задач полезно знать ход основных лучей.

а) Лучи, идущие через оптический центр линзы, не испытывают отклонения.

б) Лучи, падающие параллельно главной оптической оси

(рис.2), сходятся в фокусе, лежащем за линзой – в случае

собирающей линзы, или расходятся из фокуса, лежащего

перед линзой – в случае рассеивающей линзы.

в) Обратное утверждение линзу луч пойдет

параллельно ее главной оптической оси, если линия его

падения проходит через фокус собирающей линзы, лежащий

перед линзой, или через фокус рассеивающей линзы, лежащий за линзой (рис.3).

Пример 2. На собирающую линзу с фокусным расстоянием F1

= 17 см падает пучок света, параллельный ее главной

оптической оси. На каком расстоянии от этой линзы

нужно поставить рассеивающую линзу с фокусным расстоянием

F2

= 0,09 м, чтобы

пучок, пройдя обе линзы, остался параллельным?

(ответ: 1 2 l F F = - =

= 8 см; см. рис.4.)

г) Лучи, идущие параллельно друг другу, но не параллельно главной оптической оси (рис.5), собираются в точке

фокальной плоскости, расположенной за линзой (собирающая линза), или расходятся из точки фокальной плоскости,

расположенной перед линзой (рассеивающая линза).

Пример 3. Постройте ход произвольного луча после

прохождения собирающей (рассеивающей) линзы.

(ответ: см. рис.6; пунктиром показан вс

луч.)

3)Формула тонкой

линзы. Точечным источником обычно называют светящуюся

точку, испускающую

световые лучи в сторону линзы. Более общее определение: источник – это точка

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5

Рис. 6

Рис. 7

пересечения лучей, падающих на линзу (такое определение

позволяет вводить в рассмотрение мнимые источники; см.

рис.7). Изображением точечного источника называют точку пересечения лучей линзу. Расстояния от

источника до линзы d, от изображения до линзы f и фокусное

расстояние F связаны соотношением

1 1 1 D

d f F

+ = = , (1)

где D – оптическая сила линзы, выражается в диоптриях,

1 дптр = 1/м. При применении формулы тонкой линзы (1)

надо пользоваться следующими правилами знаков:

а) F и D положительны для собирающей линзы (действительный фокус) и отрицательны для рассеивающей линзы

(мнимый фокус);

б) f > 0 для действительного изображения, f < 0 для

мнимого изображения.

в) d > 0 для действительного источника, d < 0 для мнимого

источника.

Замечание. При решении задач удобнее считать f, d и F

положительными, а знаки учитывать в явном виде. Тогда

формула (1) принимает вид

± ± = ± = 1 1 1 D

d f F (2)

(оптическая сила D может быть как положительной, так и

отрицательной).

Пример 4. На линзу падает сходящийся пучок лучей.

После прохождения через линзу лучи пересекаются в точке,

лежащей на расстоянии 15 см от линзы. Если линзу убрать, то точка пересечения лучей переместится на 5 см

ближе к линзе. Определите фокусное расстояние линзы.

В этом случае формула (2) принимает вид

1 1 1

d f F

- + = ,

где d = 10 см (мнимый источник), f = 15 см (действительное

изображение). Получаем F = –30 см. Поскольку тип линзы

не был задан, то правую часть формулы мы написали с

плюсом, а по знаку ответа установили, что линза рассеивающая.

4) Увеличение линзы. Увеличением линзы (точнее –

линейным увеличением, поскольку есть еще и угловое)

называется отношение линейных размеров изображения к

линейным размерам предмета. Для поперечного увеличения,

т.е. для размеров в направлении, перпендикулярном главной

оптической оси, верна формула

H f

h d

Γ = = , (3)

которая следует из подобия соответствующих треугольников

(рис.8). Отметим, что если пользоваться формулой линзы в

форме (1), то формулу

(3) надо писать с модулями, что неудобно, или

вводить отрицательное Γ

для случая прямого (не

перевернутого) изображения, т.е. когда источник и изображение находятся по одну сторону от

линзы (например, действительный источник и мнимое изображение). Такой подход возможен, но он слишком формален и чреват ошибками.

Поэтому мы будем пользоваться формулами (2), (3).

4,5(47 оценок)
Ответ:
ира1005
ира1005
02.10.2022
Вот
Люди поминутно падали бы и не могли подняться. Ведь только трение (точнее: трение покоя) позволяет нам отталкиваться ногами, шагая вдоль по ровной дороге.

На столе ничего не лежало бы: при малейшем -наклоне всё съезжало бы на пол, скользило и катилось по нему, стараясь добраться до самого низкого места. В самом деле, ведь только сила трения покоя удерживает предметы на слегка наклонном гладком столе и полу и не даёт им съезжать под действием силы тяжести.

Все узлы немедленно развязывались бы; ведь узлы держатся только благодаря трению одних частей верёвки, шнурка или бечёвки о другие.

Все ткани расползались бы по ниткам, а нитки – в мельчайшие волокна.

Но не только ходить в мире без трения было бы невозможно.

Каким образом, например, мог бы шофёр остановить свою машину? Ведь автомобиль тормозят тем, что прижимают к специальным барабанам, вращающимся вместе с колёсами, тормозные колодки (или ленты) . Повернуть машину в мире без трения тоже не удалось бы. Вспомните, что в гололедицу автомобиль не только «идёт юзом» , но и не слушается руля. Без трения автомобиль не только нельзя остановить или повернуть, его вообще нельзя заставить катиться. Мотор приводит во вращение задние ведущие колёса автомобиля. Но в мире без трения вращающиеся ведущие колёса автомобиля будут «буксовать» , как это часто бывает в зимнее время на обледеневшей дороге. Чтобы колёса катились, необходимо трение их о дорогу.

В мире без трения нельзя было бы ничего толком построить или изготовить: все гвозди выпадали бы из стен, – ведь вбитый гвоздь держится только из-за трения о дерево. Все винты, болты, шурупы вывинчивались бы при малейшем сотрясении – они удерживаются только из-за наличия трения покоя.

Нельзя было бы построить самой простой машины. Приводные ремни, бегущие со шкива на шкив и передающие вращение от моторов к станкам и машинам, немедленно соскакивали бы: ведь именно трение заставляет ремень, надетый на ведущий шкив, двигаться вместе с ним.

И без жидкого трения жизнь на Земле была бы затруднительной. Из-за неравномерного нагревания Солнцем различных участков поверхности Земли воздух над ними не бывает одинаково плотным. Более плотный воздух из холодных мест перемещается в места более тёплые, вытесняя оттуда нагретый воздух. Возникает движение воздуха – ветер. Но при наличии внутреннего трения (вязкости) движение воздуха тормозится, ветер рано или поздно стихает. В мире без трения ветры дули бы с невероятной скоростью.

Реки, текущие с гор, не тормозились бы о берега и дно. Вода в них текла бы всё быстрее и быстрее и, с бешеной силой налетая на излучины берегов, размывала и разрушала бы их. Упавшие в воду глыбы (например, при извержении вулканов) вызывали бы волны, которые бушевали бы, не стихая – ведь усмирявшее их раньше внутреннее трение между слоями воды,
а также трение о берега и дно исчезли! Огромные волны на морях и океанах, раз образовавшись, никогда не стихали бы.

Картина мира без трения: ползущие без торможения со склонов гор на равнины громадные каменные глыбы, рассыпающиеся песчаные холмы.. . Всё, что может двигаться, будет скользить и катиться, пока не окажется на самом низком возможном уровне.
Жизнь без трения невозможна.
4,6(10 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ