М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kav2003
kav2003
25.08.2021 07:23 •  Физика

Найдите энергию поля заряженного конденсатора,в котором при напряжении 100в возникает заряд 6мккл

👇
Ответ:
aytac200505
aytac200505
25.08.2021

E = \frac{1}{2}Q\cdot U = \frac{6 \cdot 10^{-6}C \cdot 100 B}{2} = 30мДж.

4,8(79 оценок)
Открыть все ответы
Ответ:
Redob
Redob
25.08.2021

Мельчайшей частицей вещества, которая определяет все свойства данного вещества, является молекула. Молекула состоит из атомов. Число атомов и их распределение в молекуле является различным. В природе существует немногим более сотни атомов различного вида. Элементы обобщены и расположены в периодической таблице химических элементов, им даны наименования, например, водород, азот, углерод.   строение вещества

Движение частиц вещества называют тепловым движением.

Броуновское движение — беспорядочное движение микроскопических видимых, плавающих в жидкости или газе частиц твёрдого вещества, вызываемое тепловым движением частиц жидкости или газа.

Взаимное проникновение частиц одного вещества в другое, обусловленное движением молекул, называют диффузией (от латинского «диффузио» — распространение, растекание).

диффузия

Состояние вещества.  Вещества в природе встречаются в трёх состояниях:

твёрдом

жидком

газообразном

три состояния веществаТвёрдые тела сохраняют объём и форму. Жидкости сохраняют объём, но легко меняют свою форму. Газы не имеют постоянного объёма и собственной формы. Редко встречающимся состоянием вещества является плазма, которая сходна с газом и излучает свет. Плазму часто называют четвёртым агрегатным состоянием вещества.

Молекулы одного и того же вещества в различных состояниях не отличаются друг от друга. Различные свойства вещества во всех состояниях определяются тем, что его молекулы расположены иначе и движутся по-разному.

Каждому твёрдому телу характерна твёрдость. Твёрдость тела сопротивляться воздействию другого тела. Твёрдость вещества выясняют, царапая его каким-либо другим веществом.

Существуют различные шкалы твёрдости. Одна из них составлена в 1811 году немецким минералогом Фридрихом Моосом. Она состоит из 10 уровней, самым мягким веществом в ней является тальк, а самым твёрдым — алмаз. Алмаз в 58 раз твёрже стоящего на втором месте по твёрдости минерала корунда, из которого изготавливают рубины и сапфиры.

Свойством тел, изготовленных из твёрдого вещества, является их деформация. Деформация — изменение формы или размера тела под воздействием другого тела.

Эластичностью называют возможность тела после деформации возвращать себе первоначальную форму. Пластилин является пластичным, ему легко придать любую форму, которая сохраняется.

Прочность вещества сопротивляться разрушению. У каждого материала имеется свой предел прочности. Стекло нельзя гнуть, т.к. оно хрупкое. Очень прочными являются металлы.

Кристаллы — это твёрдые тела, в которых атомы расположены закономерно, упорядоченно, образуя кристаллическую решётку. Это лёд, соль, металлы, минералы и т.д.

Аморфные тела — тела, не имеющие строгой кристаллической решётки, бесформенные тела. («аморфный» происходит от греч. «аморфос» — бесформенный)

В отличие от кристаллов, стабильно-аморфные вещества не затвердевают с образованием кристаллических граней.

Структуры жидкостей и аморфных тел имеют много общего. По этой причине принято считать аморфные тела очень густыми, вязкими, застывшими жидкостями. Аморфные вещества могут находиться либо в стеклообразном состоянии при низких температурах, либо в состоянии расплава при высоких температурах. Аморфные тела обладают текучестью, хотя и значительно меньшей, чем жидкости. При повышении температуры текучесть аморфных тел увеличивается. Благодаря этому из капли нагретого стекла можно выдуть стеклянный сосуд.

Объяснение:

4,6(33 оценок)
Ответ:
woonov1488
woonov1488
25.08.2021

1. По назначению

По характеру использования

[Дементьев Б. А. Ядерные энергетические реакторы. — М.: Энергоатомиздат, 1990. — С. 21—22. — 351 с. — ISBN 5-283-03836-X];

[Бартоломей Г. Г., Бать Г. А., Байбаков В. Д., Алхутов М. С. Основы теории и методы расчёта ядерных энергетических реакторов / Под ред. Г. А. Батя. — М.: Энергоиздат, 1982. — С. 31. — 511 с.];

[Angelo, Joseph A. Nuclear technology. — USA: Greenwood Press, 2004. — P. 275—276. — 647 p. — (Sourcebooks in modern technology). — ISBN 1-57356-336-6]

ядерные реакторы делятся на:

- Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике, а также для опреснения морской воды (реакторы для опреснения также относят к промышленным). Основное применение такие реакторы получили на атомных электростанциях. Тепловая мощность современных энергетических реакторов достигает 5 ГВт. В отдельную группу выделяют:

-- Транспортные реакторы, предназначенные для снабжения энергией двигателей транспортных средств. Наиболее широкие группы применения — морские транспортные реакторы, применяющиеся на подводных лодках и различных надводных судах, а также реакторы, применяющиеся в космической технике.

- Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов; мощность таких реакторов не превышает нескольких кВт.

- Исследовательские реакторы, в которых потоки нейтронов и гамма-квантов, создаваемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в том числе деталей ядерных реакторов), для производства изотопов. Мощность исследовательских реакторов не превосходит 100 МВт. Выделяющаяся энергия, как правило, не используется.

- Промышленные (оружейные, изотопные) реакторы, используемые для наработки изотопов, применяющихся в различных областях. Наиболее широко используются для производства ядерных оружейных материалов, например 239Pu. Также к промышленным относят реакторы, использующиеся для опреснения морской воды.

Часто реакторы применяются для решения двух и более различных задач, в таком случае они называются многоцелевыми. Например, некоторые энергетические реакторы, особенно на заре атомной энергетики, предназначались, в основном, для экспериментов. Реакторы на быстрых нейтронах могут быть одновременно и энергетическими, и нарабатывать изотопы. Промышленные реакторы кроме своей основной задачи часто вырабатывают электрическую и тепловую энергию.

2. По спектру нейтронов

- Реактор на тепловых (медленных) нейтронах («тепловой реактор»)

- Реактор на быстрых нейтронах («быстрый реактор»)

- Реактор на промежуточных нейтронах

- Реактор со смешанным спектром

3. По размещению топлива

- Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;

- Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

4. По виду топлива

По изотопу:

- изотопы урана 235U, 238U, 233U

- изотоп плутония 239Pu, также изотопы 239-242Pu в виде смеси с 238U (MOX-топливо)

- изотоп тория 232Th (посредством преобразования в 233U)

По степени обогащения:

- природный уран

- слабо обогащённый уран

- высоко обогащённый уран

По химическому составу:

- металлический U

- UO2 (диоксид урана)

- UC (карбид урана) и т.д.

4,8(38 оценок)
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ