Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.
Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.
BN⊥AC ⇒ направляющий вектор для АС равен нормальному вектору для BN: .
Точка А(5,-3)∈АС и уравнение АС имеет вид:
CM⊥AB ⇒ направляющий вектор для АВ равен нормальному вектору для CМ: .
Точка А(5,-3)∈АВ и уравнение АВ имеет вид:
Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .
Так как в условии не указано расположение точек М и N на стороне ВС, существует два варианта решения: 1. Биссектрисы углов параллелограмма отсекают от него равнобедренные треугольники (свойство). Значит треугольники АВМ и DCN равнобедренные и АВ=ВМ, а CN=CD. CD=AB, как противоположные стороны параллелограмма, тогда АВ=ВМ=CN и АВ+ВС=3*АВ+8=22 (половина периметра). Отсюда АВ=14/3=4и2/3см, а ВС=22-14/3=52/3=17и1/3см. ответ: АВ=CD=4и2/3см. ВС=AD=17и1/3см.
2. АВ=ВМ, DC=CN=AB. Тогда ВС=АВ+МC или ВС=АВ+(АB-MN), а АВ+ВС=3*АВ-8 = 22. Отсюда ответ: АВ=CD=10см, ВС=AD=12см.
Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.
Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.
BN⊥AC ⇒ направляющий вектор для АС равен нормальному вектору для BN:
.
Точка А(5,-3)∈АС и уравнение АС имеет вид:
CM⊥AB ⇒ направляющий вектор для АВ равен нормальному вектору для CМ:
.
Точка А(5,-3)∈АВ и уравнение АВ имеет вид:
Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .