Угол АОД=180-84=96° ∠А+∠Д=180-96=84°, а т.к они равны ∠А=42°
трапеция прямоугольная поэтому 2 угла сразу по 90°, третий по усл задачи - 61°, а сумма всех углов=360°, отсюда 4й угол=119°
(х+х+25)*2=150 4х+50=150 4х=100 х=25, тогда вторая сторона 25+25=50
∠А=180-(90+30)=60° тк сумма ∠ треугольника АВД=180° значит ∠А=∠АДС, а раз так то трапеция равнобокая, значит и углы АВС и ВСД равны между собой и равны [360°(сумма углов трапеции)-(2*60)]/2=120° Рассмотрим ΔВСДΔ в нем∠ВДС=30°(по условию)∠С 120°(мы нашли), значит ∠СВД=180-(30+120)=30°, т.е получается ∠СВД=∠ВДС, а значит Δ - равнобокий, т.е. ВС=СД (и получается раз трап равнобок то)= АВ следовательно раз Р=100см, то АД=100-3АВ рассмотримΔАВД в нем син30°=АВ/АД т.к син 30°=1/2,⇒АВ/АД=1/2 ⇒АВ=1/2АД подставляем вместо АВ в равенство АД=100-3АВ 1/2АД и получаем АД=100-3*1/2АД АД+3/2АД=100 5/2АД=100 АД=100*2/5=40
стороны АВ=ВС=СД по условию рассм ΔВСД - он равнобедренный,, а значит ∠ДВС=∠ВДС пусть ∠ДВС = х, тогда 120°+х =∠С(т.к. трапеция равнобедренная) в Δ же ВСД ∠С=180°-2х составим и решим систему уравнений {120°+х=∠С {∠С=180°-2х подставляем значение ∠С из второго уравнения в первое 120+х=180-2х 3х=60 х=20° значит ∠АВС=120°+20°=140°=∠ВСД ∠А=∠АДС=[360-(140*2)]/2=40°
Поиск...
1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
Участник Знаний
05.02.2020
Математика
5 - 9 классы
ответ дан
Тест на установление истинности и ложности (Истина/Ложь)
1.Два треугольника подобны, если их углы соответственно равны и сходственные стороны пропорциональны.
2.Два равносторонних треугольника всегда подобны.
3.Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
4.Стороны одного треугольника имеют длины 3, 4, 6 см, стороны другого треугольника равны 9, 14, 18 см. Подобны ли эти треугольники?
5.Периметры подобных треугольников равны.
6.Если два угла одного треугольника равны 60° и 50°, а два угла другого треугольника равны 50° и 80°, то такие треугольники подобны.
7.Два прямоугольных треугольника подобны, если имеют по равному острому углу.
8.Два равнобедренных треугольника подобны.
9.Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
10.Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника, то такие треугольники подобны.