М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sofikri2007
sofikri2007
07.06.2020 09:15 •  Геометрия

Даны векторы a {2; 4; -4} и b{4; 8; -8}. коллинеарные векторы или нет? объясните

👇
Ответ:
Blackstone111
Blackstone111
07.06.2020
Чтобы определить, являются ли векторы a{2; 4; -4} и b{4; 8; -8} коллинеарными, мы должны проверить, удовлетворяют ли они условию коллинеарности, то есть являются ли они параллельными и имеют ли одно и то же направление.

Для проверки коллинеарности необходимо сравнить отношение каждой координаты из вектора a к соответствующей координате вектора b.

Для этого мы делим каждую координату вектора a на соответствующую координату вектора b:
a1/b1 = 2/4 = 0.5 (где a1 и b1 - первые координаты векторов a и b соответственно)
a2/b2 = 4/8 = 0.5 (где a2 и b2 - вторые координаты векторов a и b соответственно)
a3/b3 = -4/-8 = 0.5 (где a3 и b3 - третьи координаты векторов a и b соответственно)

Если отношение для всех трех координат одинаковое, в данном случае 0.5, то векторы a и b являются коллинеарными. Обоснованием для этого является то, что все координаты векторов пропорциональны друг другу, т.е. одна координата вектора можно получить, умножив соответствующую координату другого вектора на одну и ту же константу. В данном случае коэффициент пропорциональности равен 0.5.

Таким образом, векторы a{2; 4; -4} и b{4; 8; -8} являются коллинеарными.
4,5(27 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ