Пусть дуга АВ, пропорциональная числу 6, будет 6х, а дуга, пропорциональная 9, будет 9х. Запишем сумму этих дуг: 6х+9х=360 15х=360 х=24 Меньшая дуга АВ равна 6*24=144°. Рассмотрим треугольник АВС. Он прямоугольный, т.к. вписанный угол В опирается на диаметр (вписанный угол, опирающийся на полуокружность - прямой). Сумма острых углов прямоугольного треугольника равна 90°. Рассмотрим эти углы. Угол С - вписанный, опирающийся на меньшую дугу АВ, равную 144°. Значит, он равен ее половине: <C=1/2*144=72° <A=90-<C=90-72=18°
Прикладываю рисунок* Так как угол ADC=45 градусам по условию, то угол BCD=180-45=135 по свойству. Рассмотрим треугольник CHD. В нем угол CHD равен 90 градусов, так как CH-высота. Угол ADC равен 45 градусам по условию, а угол CHD=180-90-45=45 градусам. Соответственно, этот треугольник равнобедренный - HD=CH. Рассмотрим фигуру ABCH. В ней углы ABC и HAB равны 90 градусов, так как трапеция прямоугольная. Угол AHC=90 градусов, так как CH-высота трапеции. Угол BCH=135-45=90 градусов. Следовательно ABCH - прямоугольник. По условию задачи BC=27 см, значит и AH=BC=27 см, так как это прямоугольник. Из этого можно найти HD. AD равно 33 см по условию, AH=27, поэтому HD=33-27=6 см. Так как треугольник CHD - равнобедренный, в нем HD=CH=6 см. Высота найдена, можно искать площадь трапеции. Sтрапеции=27+33/2 * 6 = 180 см^2 ответ:180 см^2
6х+9х=360
15х=360
х=24
Меньшая дуга АВ равна 6*24=144°.
Рассмотрим треугольник АВС. Он прямоугольный, т.к. вписанный угол В опирается на диаметр (вписанный угол, опирающийся на полуокружность - прямой).
Сумма острых углов прямоугольного треугольника равна 90°. Рассмотрим эти углы.
Угол С - вписанный, опирающийся на меньшую дугу АВ, равную 144°. Значит, он равен ее половине:
<C=1/2*144=72°
<A=90-<C=90-72=18°