Боковые грани призмы - параллелограммы, и площадь каждого равна произведению высоты на основание.
Примем за основания граней (параллелограммов) боковые ребра. Они равны, а высоты - стороны треугольника в перпендикулярного сечения призмы, они разной длины.
Треугольник сечения подобен треугольнику со сторонами 9, 10, 17, площадь которого, найденная по ф.Герона, равна 36 (см²) (Можно без труда проверить)
Площади подобных фигур относятся, как квадрат коэффициента подобия их линейных элементов.
Если площадь сечения обозначить S, а площадь треугольника со сторонами 9,10,17 – S1, то S:S1=k²
S:S1=144:36=4
k²=3, ⇒k=√4=2
Следовательно, периметр сечения равен 2•(9+10+17)=72 см
Площадь боковой поверхности призмы равна произведению периметра перпендикулярного сечения на боковое ребро.
S=72•8=576 см²
Объяснение:
1) позначемо похилу АВ, проекцію ВС, відстань від точки А до площини - АС - отримаємо прямокутний трикутник АВС, в якому ВС і АС - катети, а АВ - гіпотенуза. Якщо ВС=АС, тоді отриманий трикутник АВС - рівнобедренний, тому його кути при основі АВ - рівні. Так як сума гострих кутів прямокутного трикутника дорівнює 90°, тоді кутА=кутВ=90÷2=45°
ВІДПОВІДЬ: кутВ між площиною та похилою дорівнює 45°
2) Так само позначемо кути, як у першому завданні АВС, і якщо катет АС дорівнює половині гіпотенузи АВ, тоді АС лежить навпроти кута В=30°(властивість кута 30°),
ВІДПОВІДЬ: кутВ=30°