Площадь диагонального сечения пирамиды - это площадь треугольника АSC=(1/2)*SO*AC. Отсюда АС=12*2/4=6. В основании пирамиды - квадрат со стороной АВ=ВС=СD=DA=3√2 (так как диагональ квадрата АС=BD=6). OC=OB=3 (половина диагонали). SO=4 (дано). Тогда SC=5, так как треугольник SOC - Пифагоров. Из треугольника DSC высоту DH найдем из того, что по Пифагору: DH²=DC²-CH² и DH²=DS²-SH². Тогда DC²-CH²= DS²-SH². Отсюда, подставив известные значения, найдем НС. 18-НС²=25-(5-НС)² => НС=1,8. Тогда DН²=DC²-НС² = 18-3,24=14,76. Угол между пересекающимися плоскостями равен линейному углу, образованному при пересечении этих плоскостей плоскостью, перпендикулярной линии их пересечения. В нашем случае это угол <DHB. По теореме косинусов из треугольника ВНD имеем: Cosφ=(DH²+BH²-BD²)/2*DH*BH. Заметим, что DH=BH. Тогда Cosφ=(2*14,76-36)/(2*14,76)=-6,48/29,52. По условию в ответе надо получить 41*Cosφ. 41*Cosφ=41*(-6,48/29,52) = -9. ответ: 41*Cosφ=-9.
Воспользуемся теоремой о свойстве касательной: Касательная к окружности перпендикулярна радиусу этой окружности,проведенному в точку касания. ⊥ ⊥ Δ и Δ прямоугольные ( как радиусы) общая Δ Δ (по гипотенузе и острому углу) Значит Пусть тогда Из Δ по теореме косинусов: с другой стороны из Δ
(1)
║ ⊥ ∩ ⇒ ⊥ Из C опустим перпендикуляр на сторону AD, т.е. ⊥ прямоугольник Δ равнобедренный, значит Δ прямоугольный подставим в (1) и получим ответ:
Рассмотрите предложенное решение.