Пусть сторона АВ треугольника АВС равна х см тогда сторона ВС равна 2 1/3 х см, а сторона АС равна (2 1/3 х + 2) см (если сторона ВС на 2 см меньше стороны АС, то сторона АС, наоборот, на 2 см больше стороны ВС). По условию задачи известно, что периметр треугольника АВС (периметр треугольника равен сумме трех его сторон; Р = АВ + ВС + АС) равен (х + 2 1/3 х + (2 1/3 х + 2)) см или 36 см. Составим уравнение и решим его.
x + 2 1/3 x + (2 1/3 x + 2) = 36;
x + 2 1/3 x + 2 1/3 x + 2 = 36;
5 2/3 x = 36 - 2;
17/3 x = 34;
x = 34 : 17/3;
x = 34 * 3/17;
x = 6 (см) - сторона АВ;
2 1/3 * x = 7/3 * 6 = 14 (см) - сторона ВС;
2 1/3 x + 2 = 14 + 2 = 16 (см) - сторона АС.
ответ. АВ = 6 см, ВС = 14 см, АС = 16 см.
ответ: стороны треугольника 13; 14; 15
Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13
84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))
84 = 7*3*4*c^2/169
c^2 = 169
c = 13
b = 14
a = 15