1 признак : если 2 угла и угол между ними соответственно равны 2 углам и углу между ними другого треугольника то эти треугольники равны Каждая сторона треугольника меньше суммы двух других сторон. То есть, не может существовать треугольника со сторонами 5 см, 3 см и 9 см, так как 9 больше, чем сумма 3 и 5. 3, и 8 тоже не может. неравенство треугольника -это одно из интуитивных свойств расстояния. Оно утверждает, что длина любой стороны треугольника всегда не превосходит сумму длин двух его других сторон.
В учебнике по геометрии автора Погорелова есть теорема 4.5. которая звучит так:внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним. Доказательство этой теоремы( которое есть в учебнике) и будет решением данной задачи. Доказательство: Пусть АВС - данный треугольник. По теореме о сумме углов треугольника( которая гласит, что сумма внутренних углов треугольника равна 180°) угол А+ угол В+угол С = 180°. Отсюда следует, что угол А+угол В= 180°- угол С. Правая часть этого равенства, то есть (180°-угол С)- это градусная мера внешнего угла треугольника при вершине С. Теорема доказана. Будут вопросы -обращайся
ДОБАВИТЬ В ЛУЧШИЕ РЕШЕНИЯ ). Решение : 1. Найдём середину отрезка АС: 6 см : 2 = 3 см - сторона АМ. 2. Из п. 1 следует: т.к. середина отрезка АС= 3 см (то бишь сторона АМ) ⇒ AB=8см; AM=6 cм. 3. Найдём сумму большого треугольника АВС: 8 см + 7 см + 6 см = 21 см - сумма большого треугольника (то бишь АВС) 4. Дальше решаем через Х ( за Х - обозначим сторону АМ ) : Х+8х+6х=21 15х=21 Х=21:15 Х= 1,4 1,4 см - сторона АМ 5. Теперь найдём площадь ( то бишь S ): S= АB⋅АМ S= 8 cм⋅1,4 см S= 11,2см ОТВЕТ: S(ABM)=11,2 см. P.S.: задачу решил ученик 7 класса.
если 2 угла и угол между ними соответственно равны 2 углам и углу между ними другого треугольника то эти треугольники равны
Каждая сторона треугольника меньше суммы двух других сторон. То есть, не может существовать треугольника со сторонами 5 см, 3 см и 9 см, так как 9 больше, чем сумма 3 и 5. 3, и 8 тоже не может.
неравенство треугольника -это одно из интуитивных свойств расстояния. Оно утверждает, что длина любой стороны треугольника всегда не превосходит сумму длин двух его других сторон.