Назовем трапецию ABCD. BC - меньшее основание, AD - большее. Проведем высоту CH из точки C к основанию AD. Получившаяся фигура ABCH является прямоугольником, так как два угла у фигуры прямые. Противоположные стороны у прямоугольника равны, следовательно AB=CH=3 см. Площадь трапеции равна полусумме ее оснований, умноженной на высоту. То есть: S=(BC+AD)\2*CH. 30=(BC+AD)\2*3 Преобразовав выражение, получаем такое: BC+AD=20 см. Так как периметр равен 28 см, на два основания приходится 20 см и 3 см на меньшую сторону, то большая сторона равна: 28-20-3=5 см. ответ: CD=5 см.
Нужно опустить перпендикульрную прямую из вершина угла на плоскость. Получится октаэдр
Угол между плоскостью и треугольником это угол между треугол. и треугол. снования.
Кактет треугольника обозначим буквой а. А высоту а корней из 2
Боковая грань октаэдра. Прям. треуг. с уголом в 30 градусов и гипотнузой будет а.Второй же катет будет a/2.
В искомом треуг, образован.высотами известны катет и гипотенуза, по ним определять синус или косинус( на выбор), и потом по ним скать угол.
Синус противолежащий катет к гипотенузе
косинус прилежащий катет к гипотенузе.