1. Первоначальные сведения по геометрии появились за 4-5 тысячелетий до наших дней в Древнем Египте. В этих краях ежегодные разливы Нила смывали посевы. Поэтому для того чтобы восстанавливать посевы и уточнять размеры налогов, необходимо было размечать поля и выполнять необходимые подсчёты.
2. Древнегреческие учёные переняли у египтян измерения и учёта земель и назвали эти знания геометрией. "Геометрия" - слово, происходящее от греческих слов "reo" - земля, "метрео" - измерять.
3. Евклид, Пифагор, Мухаммад аль-Хорезми, Ахмад Фергани, Абу Райхан Беруни, Абу Али ибн Сина.
4. Памятник Кок Минор напоминает нам форму цилиндра, а на его поверхности фигуры, похожие на круги, овалы и ромбы.
5. Геометрия изучает пространственные структуры и отношения.
Объяснение:
Вроде всё!)
1) Дано: ∠DAC = ∠DCA = ∠CAB = ∠BAC.
Доказать: ABCD - параллелограмм.
Доказательство: Рассмотрим ΔABC и ΔAD.AC - общая сторона, ∠DAC = ∠DCA = ∠CAB = ∠BAC (по условию) ⇒ ΔABC = ΔAD по стороне и двум прилежащим к ней углам.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ AD = BC ; AB = DC. ⇒ABCD - параллелограмм, так как в этом четырёхугольнике противоположные стороны попарно равны.
ответ: что и требовалось доказать.
2) Дано: DO = OB ; ∠OAB = ∠DCO.
Доказать: ABCD - параллелограмм.
Доказательство: Рассмотрим прямые DC и AB при секущей AC.Накрест лежащие углы ∠OAB = ∠DCO (по условию) ⇒ DC║AB.
Рассмотрим ΔAOB и ΔDOC.∠OAB = ∠DCO (по условию) ; DO = OB ; ∠AOB = ∠DOC (вертикальные). ⇒ ΔAOB = ΔDOC по стороне и двум прилежащим к ней углам.Так как треугольники равны, то и их соответствующие элементы равны. ⇒ AB = DC. ⇒ ABCD - параллелограмм, так как в этом четырёхугольнике две противоположные стороны параллельны и равны.
ответ: что и требовалось доказать.
3) Дано: ∠D = ∠A = ∠B.
Доказать: ABCD - параллелограмм.
Доказательство: Рассмотрим прямые DC и AB при секущей AD.Накрест лежащие углы ∠D = ∠A (по условию) ⇒DC║AB.Так как DC║AB, то ∠B = ∠C (как накрест лежащие углы при пересечении параллельных прямых секущей).Теперь рассмотрим прямые AD и BC при секущей DC.Соответственные углы ∠D = ∠C (по выше доказанному) ⇒ AD║BC. ⇒ ABCD - параллелограмм, так как в этом четырёхугольнике противоположные стороны попарно параллельны (по определению).
ответ: что и требовалось доказать.