Объяснение:
Пусть длина будет обозначена буквой а, а ширина - буквой b.
Рассмотрим треугольник АСД, угол Д=90 градусам.
tg(α/2)=b/a, тогда а=b/tg(α/2)
S прям-ка = a*b, значит a = S/b
S пов-ти тела = S внеш. + S внутр.
S внеш. = S усеч. конуса 1 + S усеч. конуса 2
S бок. пов-ти ус. конуса 1 = П (R+r)*b
S бок. пов-ти ус. конуса 2 = П (R+r)*a
Рассмотрим треугольник АСД, угол Д=90 градусам.
Угол АДС = 90 град. - (α/2)
Ниже буквы Е на чертеже есть пересечение черной полосы и серой, обозначь его F(вторую, которая уже есть, убери) , а ниже буквы C, где идет пересечение средней линии треугольника и перпендикуляра, обозначь его за букву O.
Исходя из прямоугольного треугольника ДАF, где угол F - прям-й
sin(90 град. - (α/2)) = AF/AD
AF=AD*cos(α/2)=b*cos(α/2)
AF=r=b*cos(α/2)
AO=R=2r=2b*cos(α/2)
S бок. пов-ти ус. конуса 1 = П*b*(2b*cos(α/2)+b*cos(α/2))=П*b*(3b*cos(α/2))=П*3b^2*cos(α/2)
S бок. пов-ти ус. конуса 2 = П*a*(2b*cos(α/2)+b*cos(α/2))=П*a*3b*cos(α/2)=3П*a*b*cos(α/2)=3П*S*cos(α/2)
S внеш. = 3П*b*cos(α/2) + 3П*S*cos(α/2)
S внутр. = S бок. пов-ти конуса 1 + S бок. пов-ти конуса 2
S бок. пов-ти конуса 1 = П*r*b=П*b*cos(α/2)*b=П*(b^2)*cos(α/2)
S бок. пов-ти конуса 2 = П*r*a=П*b*cos(α/2)*a=П*a*b*cos(α/2)=П*S*cos(α/2)
S внутр. = П*(b^2)*cos(α/2) + П*S*cos(α/2)
S пов-ти тела вращения = 3П*b*cos(α/2) + 3П*S*cos(α/2) + П*(b^2)*cos(α/2) + П*S*cos(α/2) = 2*П*(b^2)*cos(α/2)+2*П*S*cos(α/2) = 4 П*cos(α/2)*((b^2)+S)
b^2=S* tg(α/2)
S пов-ти тела вращения=4 П*cos(α/2)*(( S* tg(α/2)+S)= 4 П*S*cos(α/2)*( tg(α/2)+1)=4П*S*cos(α/2)*(sin(α/2)/cos(α/2))+1=(4*П*S*cos(α/2)*(sin(α/2)+cos(α/2))/cos(α/2)=4П*S*(sin(α/2)+sin(90 град - (α/2)) – в общем там дальше распишешь по формуле суммы косинуса и синуса и к концу придешь к ответу – 4*корень из двух*П*S*cos(45 - (α/2))
Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки.
Периметр — общая длина границы фигуры.
Два и более треугольника можно назвать равными в том случае если у них стороны соответствующие стороны и углы равны.
Теорема - это математическое утверждение, истинность которого установлена путём доказательства.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
6)Отрезок, образующий с данной прямой угол 90 градусов.
7)Через данную точку к данной прямой можно провести перпендикуляр и только один. А если предположить, что можно провести, скажем, два перпендикуляра из заданной точки, то в получившемся треугольнике будет два прямых угла, что невозможно.
8)медианой-отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
9)Треугольник имеет три медианы
10)Биссектриса треугольника - отрезок биссектрисы одного из его углов до ее пересечения с противолежащей стороной треугольника.
11)3 биссектрисы
12)Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
13)3 высоты
14)Равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине.Боковыми называются равные стороны, а последняя неравная им сторона — основанием.
15)Треугольник у которого все стороны равны между собой
16)Свойства равнобедренного треугольника. Свойство первое. В равнобедренном треугольнике углы при основании равны. Доказательство теоремы: Дан равнобедренный ΔABC, в котором AB = AC. К его основанию проведена биссектриса AD. Так как AD является биссектрисой, соответственно, угол ∠1 будет равен углу ∠2. Сторона AD – общая для ΔADB и ΔADC.
17) В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
18)Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.
19)Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
20)Определение – это первичное описание объекта.
21)Окружность - геометрическое место точек, равноудаленных от одной точки, называемой центром.
Хорда, проходящая через центр окружности, называется диаметром Диаметр — это хорда на окружности, и проходящий через центр этой окружности . Также диаметром называют длину этого отрезка.
Радиус — отрезок, соединяющий центр окружности (или с любой точкой, лежащей на окружности (или сфере), а также длина этого отрезка.
22)
Медиана AM = 18,3 см.
Объяснение:
По условию ΔABC равнобедренный. AB = AC.
AM медиана, отрезок, проведенный из вершины треугольника на середину противолежащей стороны. BM = MC.
Медиана в равнобедренном треугольнике является осью симметрии треугольника и делит его на две равных части.
Периметр ΔABC P₁ = AB + BC + AC = 155 см. Тогда сумма отрезков AB + BM = P₁ / 2 = 155 см / 2 = 77,5 см.
По условию периметр ΔABM P₂ = 95,8 см;
P₂= AB + BM + AM = 77,5 см + AM = 95,8 см;
AM = 95,8 см - 77,5 см = 18,3 см.
AM = 18,3 см.