На чертеже точки касания N и N1 изображены совпадающими, но это еще надо доказать. Поэтому СНАЧАЛА я не считаю их совпадающими. То есть окружность O1 касается AC в точке N, а окружность O2 - в точке N1 (слова "с центром" дальше буду опускать, если и так ясно). Для треугольника ABC точки касания с O1 делят стороны на три отрезка AN, CN и еще один (точнее, два равных) из вершины B. Я обозначу его например буквой x. Тогда очевидно AN + CN = AC; AN + x = AB; CN + x = BC; Если вычесть из второго третье, получится AN - CN = AB - BC; если теперь сложить это с первым, то AN = (AC + AB - BC)/2; Точно так же для треугольника ACD получается AN1 = (AC + AD - CD)/2; и нигде не предполагается, что AN = AN1; это надо доказать. Весь четырехугольник ABCD является ОПИСАННЫМ, то есть AD + BC = AB + CD; или AD - CD = AB - BC; или AC + AD - CD = AC + AB - BC; то есть AN = AN1, и точки N и N1 совпадают, это просто одна точка N. Последствия этого очень велики. :) Окружности O1 и O2 касаются, AC является общей касательной, проведенной в точке касания N окружностей O1 и O2, и линия центров O1O2 перпендикулярна AC. Важно! - пока нигде не использовано, что ABCD - трапеция! Этот результат справедлив для любого выпуклого описанного четырехугольника. Поэтому (см. чертеж) ∠KO1O2 = ∠CAD (стороны углов перпендикулярны), и треугольники KO1O2 и ACP подобны. CP - высота трапеции. Она равна CP = 2R = 40; сумма радиусов окружностей равна O1O2 = 25; отсюда легко найти KO1 = 40 - 25 = 15; получился "египетский" треугольник :) то есть KO2 = 20; Ну, и из подобия KO1O2 и ACP AC = 50 (поскольку СP = 2*KO2 :) )
Переводчик не знает слово "госьрі". Предполагаю, что это "острые".
Дано:
∠ABC = 90°
∠NCA : ∠MAC = 17:13
Найти: ∠BAC, ∠BCA
∠NCA = 180° – ∠BCA
∠MAC = 180° – ∠BAC
(180° – ∠BCA) : (180° – ∠BAC) = 17 : 13
(180° – ∠BCA) = 17 · (180° – ∠BAC) / 13
∠BCA = 180° – 17 · (180° – ∠BAC) / 13
Сумма углов треугольника равна 180°:
∠BCA + ∠BAC + ∠ABC = 180°
Подставим значения для ∠BCA и ∠ABC:
180° – 17 · (180° – ∠BAC) / 13 + ∠BAC + 90° = 180°
17 · (180° – ∠BAC) / 13 – ∠BAC = 90°
17 · (180° – ∠BAC) – 13 · ∠BAC = 13 · 90°
17 · 180° – 30 · ∠BAC = 13 · 90°
30 · ∠BAC = 17 · 180° – 13 · 90° = 1890°
∠BAC = 1890° / 30 = 63°
Из суммы углов треугольника:
∠BCA = 180° – ∠BAC – ∠ABC = 180° – 63° – 90° = 27°
ответ: ∠BAC = 63°, ∠BCA = 27°.