Дан параллелограмм abcd одна из сторон которого равна 12 см. диагональ bd делит угол abc на два равных угла по 60 градусов найдите площадь треугольника abd
Решается очень просто, просто нужно немножко подумать.Постараюсь объяснить! из точки В к основанию АД опускаешь высоту, получается высота ВК. из точки С опускаешь высоту к основанию АД, получается высота СМ. ВСМК-прямоугольник, значит ВС=КМ=4. Из АД-КМ=18-4=14 АК=МД=14/2=7 В прямоугольном треугольнике, против угла 30 градусов, лежит катет равный половине гипотенузы. В треугольнике АВК угол А 60 градусов(по условию), угол К 90 градусов(ВК высота), значит угол В=180-(90+60)=30 Катет АК лежит против угла В, то есть против угла 30 градусов, отсюда следует: АВ=2хАК=2х7=14
а) По определению проекция фигуры на плоскость - совокупность проекций всех точек этой фигуры на плоскость проекции.
Точка К проецируется в основание перпендикуляра КА, т.е. в т. А.
Т. В и С ∆ КВС лежат в плоскости ромба. Через две точки можно провести только одну прямую. ⇒
Все точки сторон ∆ КВС проецируются на стороны ∆ АВС. ⇒
∆ АВС проекция ∆ КВС на плоскость ромба АВCД.
б) КА перпендикулярен плоскости ромба, следовательно, перпендикулярен любой прямой, проходящей в этой плоскости через т. А. ⇒КА⊥АС
Диагонали ромба взаимно перпендикулярны.⇒АС⊥ВД
АО - высота равнобедренного ∆ АВД. Из ∆ АОВ по т.Пифагора АО=√(B²-BO²)=√(25-9)=4
Расстояние от точки до прямой равно длине проведенного между ними перпендикуляра.
КО по т. о 3-х перпендикулярах перпендикулярен ВД.
Из прямоугольного ∆ КАО расстояние КО=√(КА²+АО*)=√(9+16)=5 см