Отрезки касательных из одной точки до точки касания с окружностью равны. По свойству радиуса, проведенного в точку касания, ОВ⊥ВА; ОС⊥СА
∆ АВО=∆ АСО по 3-м сторонам ( по каким - укажите)
∆ ВАС - равнобедренный, ∠ ВАМ=∠САМ,
АМ биссектриса, высота, медиана ∆ ВАС и перпендикулярна ВС.
АМ=МО по условию, следовательно, ВМ - медиана прямоугольного треугольника, проведенная к гипотенузе, и
ВМ=АМ=ОМ (свойство), ⇒ ВС=АО
Четырехугольник, диагонали которого равны, взаимно перпендикулярны и при пересечении делятся пополам - квадрат.
⇒
∠ВАС=90°
ABC=160; BCD=110
Объяснение:
По правилу четырех угольника сумма соседних углов равна 180 градусовВсего в четырёхугольнике 360 градусовПолучим:
180-ADC= 180-70=110=BCD180-BAD=180-20=160=ABC