В плоскости, на равном расстоянии от вершин треугольника, находится центр окружности, описанной около этого треугольника, при этом прямой угол опирается на дугу 180° (вписанный угол равен половине дуги, на которую опирается), а это значит, что гипотенуза прямоугольного треугольника является диаметром окружности, описанной около этого треугольника, а середина гипотенузы является центром этой окружности.
Следовательно, если из середины гипотенузы восстановить перпендикуляр над плоскостью треугольника, то точка А будет находиться на этом перпендикуляре на расстоянии 4 от плоскости.
1) Длина гипотенузы треугольника:
с = √(8²+14²) = √(64+196) = √260
4) Расстояние d от точки А до вершин треугольника, согласно теореме Пифагора:
Т.к. дан косинус, то нужно построить прямоугольный треугольник))) 1) строим две пересекающиеся перпендикулярные прямые)) обозначаем точку пересечения С ---это вершина прямого угла))) это будут катеты в будущем прямоугольном треугольнике... осталось построить гипотенузу... сos(x) = 0.75 = 3/4 по определению: косинус ---это отношение противолежащего катета к гипотенузе... т.е. противолежащий к нужному углу катет будет равен 3 см (или 6 м или 9 км...), а гипотенуза соответственно 4 см (или 8 м или 12 км...))) 2) на одной из двух построенных прямых откладываем от вершины прямого угла 3 см (например))) ---обозначаем точку А. 3) из точки А раствором циркуля в 4 см строим окружность... она пересечется с другой перпендикулярной прямой ---обозначаем точку В. АВ--гипотенуза 4 см СА--катет 3 см искомый угол ВАС его косинус = АС / АВ = 3/4 = 0.75
9
Объяснение:
В плоскости, на равном расстоянии от вершин треугольника, находится центр окружности, описанной около этого треугольника, при этом прямой угол опирается на дугу 180° (вписанный угол равен половине дуги, на которую опирается), а это значит, что гипотенуза прямоугольного треугольника является диаметром окружности, описанной около этого треугольника, а середина гипотенузы является центром этой окружности.
Следовательно, если из середины гипотенузы восстановить перпендикуляр над плоскостью треугольника, то точка А будет находиться на этом перпендикуляре на расстоянии 4 от плоскости.
1) Длина гипотенузы треугольника:
с = √(8²+14²) = √(64+196) = √260
4) Расстояние d от точки А до вершин треугольника, согласно теореме Пифагора:
d² = (√260/2)² + 4² = 260/4 + 16 = 65 + 16 = 81
d = √81 = 9
ответ: 9