а) В четырехугольник можно вписать окружность, если суммы противолежащих сторон равны. Все стороны ромба равны, суммы противолежащих сторон равны - в любой ромб можно вписать окружность.
Центр вписанной окружности - пересечение биссектрис. Диагонали ромба являются биссектрисами его углов, центр вписанной окружности ромба - пересечения диагоналей (O).
Диагонали ромба перпендикулярны, точкой пересечения делятся пополам. Треугольник ABO - египетский
AO=AC/2=4, BO=BD/2=3 => AB=5
OH - высота, проведенная из прямого угла
r= OH= AO*BO/AB =4*3/5 =2,4
(Расстояние от центра окружности до касательной - радиус.)
б) Около четырехугольника можно описать окружность, если сумма противолежащих углов равна 180. В ромбе противолежащие углы равны. Если их сумма 180, то углы прямые и ромб является квадратом. Данный ромб не является квадратом, так как его диагонали не равны. Следовательно около него нельзя описать окружность.
в) BCD - равнобедренный остроугольный. (BD=DC, стороны ромба. Данный ромб не является квадратом, угол BDC - острый.)
г) Синус угла в прямоугольном треугольнике - отношение противолежащего катета к гипотенузе.
В треугольнике ABO
sin(ABO)= AO/AB =4/5
Объяснение:
1)угол А равен углу С
А+С=2А=100°
А=50°
А+В=180°
В=180°-50°
В=130°
2)АС - это диаметр =12
СD = 8
AOB= CD+2×AC/2= 8+12=20
3) треугольник ABD равносторонний
отсюда средняя линия равна половине стороне которой она паралельна
сначала найдём сторону ромба
4а=24
а=6
СР.линия=6/2=3