М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lizkic
Lizkic
28.05.2023 22:27 •  Геометрия

Точки a и b лежат на двух окружностях с общим центром и радиусами ra=2 см и rb=4 см соответственно. величина ∠aob (o – общий центр окружностей) равна 60∘. найдите расстояние |ab|. ответ запишите в сантиметрах, округлив до сотых.

👇
Ответ:
bulgatovanastya1
bulgatovanastya1
28.05.2023

Если мы продлим радиус OA до точки пересечения с окружностью с радиусом OB (пусть он пересекает эту окружность в точке C), то A окажется средней точкой OC, потому что радиус OA = 2, а радиус OC = 4. OC/2 = 4/2 = 2. Значит, AB - медиана треугольника ACO. OB = OC, потому что это радиусы большей окружности. Значит, треугольник BCO равнобедренный, поэтому углы при основании равны. Сумма углов треугольника равна 180, а третий угл нам дан по условию. Найдём два оставшихся.

x = (180 - 60)/2 = 120/2 = 60

Значит все углы по 60 градусов, значит, треугольник равносторонний, значит медиана AB также является биссектрисой и высотой, значит, ABO - прямоугольный треугольник с прямым углом B, значит, мы можем найти AB по теореме Пифагора:

AB = √(OB^2 - AO^2)

AB = √(4^2 - 2^2)

AB = √(16 - 4)

AB = √(12)

AB = √(4 * 3)

AB = 2√3


Точки a и b лежат на двух окружностях с общим центром и радиусами ra=2 см и rb=4 см соответственно.
4,7(34 оценок)
Открыть все ответы
Ответ:
sasha22114
sasha22114
28.05.2023
1.
Все грани куба - квадраты. Тогда ребро куба:
а = √9 = 3 см
V = a³ = 3 = 27 см³

2.
а = 2 см - ребро основания призмы,
α = 30° - угол в основании,
h = 3 см - высота призмы.

V = Sосн · h

Sосн = a²·sinα = 4 · 1/2 = 2 см²

V = 2 · 3 = 6 см³

3.
В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см.
ОС = а√3/3 = 5√3/3 см как радиус описанной окружности.
ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды
SO = ОС = 5√3/3 см

V = 1/3 · Sосн · SO
V = 1/3 · a²√3/4 · SO
V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³
4,5(56 оценок)
Ответ:
Аляска56
Аляска56
28.05.2023

68. По данным на рисунке найдите площадь \triangle CKB.

- - -Дано :

ΔСКВ - прямоугольный (∠С = 90°).

СК - высота (СК⊥АВ).

АК = 4, КВ = 16.

Найти :S_{\triangle CKB} ~=~ ?Решение :В прямоугольном треугольнике высота, проведённая к гипотенузе - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.

Следовательно, CK = \sqrt{AK*KB} = \sqrt{4*16} = \sqrt{2*2*4*4} = 2*4 = 8.

Площадь прямоугольного треугольника равна половине произведения его катетов.

Следовательно, S_{\triangle CKB}=\frac{CK*KB}{2} =\frac{8*16}{2} =\frac{128}{2} =64 ед².

ответ :

64 ед².

- - -

70. ABCD - прямоугольник. Найдите S_{ABCD}.

- - -Дано :

Четырёхугольник ABCD - прямоугольник.

АС - диагональ.

HD⊥АС.

HD = 6, АН = 9.

Найти :

S_{ABCD}~=~ ?

Решение :Прямоугольник - это параллелограмм, все углы которого прямые.

Следовательно ∠D = 90°.

Рассмотрим ΔACD - прямоугольный.

В прямоугольном треугольнике высота, опущенная на гипотенузу - это среднее геометрическое между отрезками, на которое поделило основание высоты гипотенузу.

Следовательно, HD^{2} = AH*HC \Rightarrow HC = \frac{HD^{2} }{AH} = \frac{6^{2} }{9} = \frac{36}{9} =4.

Площадь треугольника равна половине произведения высоты и стороны, на которую опущена эта высота.

Следовательно, S_{\triangle ACD}=\frac{AC*HD}{2} =\frac{(AH+HC)*HD}{2} =\frac{(9+4)*6}{2} = 13*3=39 ед².

Диагональ параллелограмма делит параллелограмм на два равновеликих (равных по площади) треугольника.

Тогда S_{ABCD} = 2*S_{\triangle ACD} = 2*39 ед² = 78 ед².

ответ :

78 ед².

4,5(52 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ