5)
<DCK= 180°- (<CDK+<DKC) (тк сумма всех углов треугольника равна 180°)
<DCK= 180°- (28°+75°)=77°
<DKE= 180° - DKC (тк <DKE и <DKC - смежные)
<DKE= 180°-75°= 105°
<KDE= 28° (по рисунку)
<DEK= 180°- (<DKE+<KDE) (тк сумма всех углов треугольника равна 180°)
<DEK= 180°- (105°- 28°)= 47°
ответ: <DCK= 77°, <DKE= 105°, <KDE= 28°, < DEK= 47°
6)
В ^ABC стороны при основании равны => ^ABC равнобедренный => углы при основании равны.
1. 180°-40°= 140°
2. 140°:2°=70°
ответ: <A= 70°, <C= 70°
Объяснение:
обозначения :
< - угол
=> - следовательно
^ - треугольник
Объяснение:
1. Выполняем построение треугольника АВС.
2. Строим график прямой х = -12 . Это вертикальная прямая проходящая через точку (-12; 0)
3. Выполняем построение симметричной фигуры:
от т. А проводим перпендикуляр к прямой х = -12. Откладываем перпендикуляр такой же длины в противоположною сторону от х = -12.
То же самое выполняем для т. В. Т. С совпадает с точкой С1, т.к. абсцисса т. С = -12 и лежит на прямой х = -12.
Координаты ΔA1B1C1 можно определить графически:
А1(-36;4) , В1(-28; -12) , С1(-12; -4).
Также абсциссы можем определить математически:
х1 = -12 - (12+х) = -24-х.
Здесь -12 - это сдвиг координат влево на 12 единиц, (12+х) расстояние между осью симметрии и точками исходного треугольника.
Ординаты остаются неизменными, т.к. ось симметрии - вертикальная.