ответ: 108
Объяснение:
В решении векторы буду опускать, но они подразумеваются.
Дано:
a = 3u - 3v
d = 3u + 2v
|u| = |v| = 6 (см)
u ⊥ v
u ⊥ v ⇒ u · v = 0 (скалярное произведение равно 0)
Рассмотрим скалярное произведение векторов u и v на самих себя:
u · u = |u| · |u| · cos 0 = 6 · 6 · 1 = 36 (по опр. скалярного произв.)
v · v = |v| · |v| · cos 0 = 6 · 6 · 1 = 36 (по опр. скалярного произв.)
Тогда,
a · d =
= (3u - 3v)(3u + 2v) =
= 3(u - v)(3u + 2v) =
= 3(3u · u - 3u · v + 2u · v - 2v · v) =
= 3(3u · u - u · v - 2v · v) =
= 3(3 · 36 - 0 - 2 · 36) =
= 3 · 36 = 108
ответ: 108
Объяснение:
В решении векторы буду опускать, но они подразумеваются.
Дано:
a = 3u - 3v
d = 3u + 2v
|u| = |v| = 6 (см)
u ⊥ v
u ⊥ v ⇒ u · v = 0 (скалярное произведение равно 0)
Рассмотрим скалярное произведение векторов u и v на самих себя:
u · u = |u| · |u| · cos 0 = 6 · 6 · 1 = 36 (по опр. скалярного произв.)
v · v = |v| · |v| · cos 0 = 6 · 6 · 1 = 36 (по опр. скалярного произв.)
Тогда,
a · d =
= (3u - 3v)(3u + 2v) =
= 3(u - v)(3u + 2v) =
= 3(3u · u - 3u · v + 2u · v - 2v · v) =
= 3(3u · u - u · v - 2v · v) =
= 3(3 · 36 - 0 - 2 · 36) =
= 3 · 36 = 108
Треугольники AOD и BOC - подобные, так как углы BOC и AOD - равны как вертикальные, BC||AD - по условию задачи и два остальных угла BCO и OAD, CBO и ODA треугольников тоже равны, как лежащие между параллельными сторонами и получаем подобие треугольников за равными тремя углами.
Площади подобных треугольников относятся как квадраты их линейных размеров, то есть
SAOD/SBOC=(AD)^2/(BC)^2
32/8=100/(BC)^2
(BC)^2=8*100/32=25
BC=5