Объяснение:
Пусть угол МРR=х, тогда угол АРR=2х.
Угол АРR=углу РАR=2х, так как у равнобедренного треугольника углы при основании равны.
Угол RMP и угол АМР-смежные. Сумма смежных углов равна 180°.
Угол АМР=180°-72°=108°
Рассмотрим треугольник АМР:
Угол АМР=108°; угол МАР=2х; угол МРА=х.
Сумма углов треугольника равна 180°
Решим с уравнения:
2х+х+108=180
2х+х=180-108
3х=72
х=72:3
х=24
Угол МРА=24°
Угол МАР=2*24°=48°
Угол РАR=углу APR=48°
Как я и говорила раньше сумма углов треугольника равна 180°.
Найдём угол при вершине АRP:
Угол ARP=180°-(48°+48°)=84°
Объяснение:
поскольку это три разных отрезка, а не один как в равнобедренном Δ, то это разносторонний треугольник. высота это кратчайшее расстояние до вершины, ее длина минимальная из этих прямых и ее основание находится ближе все к вершине. Биссектриса делит основание пропорционально длинам боковых сторон не на одинаковые отрезки. Причем больший отрезок лежит под большей стороной и он больше половины, что следует из того что это не равнобедренный Δ. поэтому медиана находится за биссектрисой. Что и следовало доказать